Skip to main content

Advertisement

Log in

Hypericum japonicum: a Double-Headed Sword to Combat Vector Control and Cancer

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Mosquito control with naturally derived herbal insecticides has gained much momentum, with the increased insecticide resistance of vectors and the multiple infectious diseases spread by them. Yet, recent studies also suggest that mosquitoes could probably transmit some cancerous cells or cancer-causing viruses from one individual to another between their blood meals. The current research thus focused on the screening and characterization of novel plants with both mosquitocidal and anticancerous properties. Accordingly, different solvent extracts of Hypericum japonicum, a key plant in Chinese medicine, were screened for its larvicidal efficacy using the fourth instar larvae of Aedes aegypti (major vector of Dengue and chikungunya). Methanolic extracts of the plant showed effective larvicidal property with LC50 7.37 ppm and LC9011.59 ppm values. The anticancerous property of the plant extract was also evaluated by in vitro cytotoxicity assay against Daltons Lymphoma Ascites (DLA) cells. The results indicated that H. japonicum plant extracts at very low concentrations of LC500.95 ppm and LC901.85 ppm were potent cytotoxic agents. To the best of our knowledge, this is the first and the foremost report of Hypericum japonicum as a potent mosquitocidal and anticancerous agent. Identification and characterization of such plant-derived bioactive plants thus could serve as a double-headed sword against the spread of infectious diseases and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A. aegypti :

Aedes aegypti

LCL:

Lower confidence limit

UCL:

Upper confidence limit

LD:

Lethal Dose

DLA:

Daltons Lymphoma Ascites cells

References

  1. Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265–267.

    Article  CAS  Google Scholar 

  2. Aneesh, E.M., & Vijayan, V. (2010). Laboratory selection of carbofuran tolerant line of Culex quinquefasciatus Say, the filarial vector at Mysore. Journal of communicable Diseases, 42, 201–207.

  3. Anoopkumar, A., Puthur, S., Varghese, P., Rebello, S., & Aneesh, E. M. (2017). Life cycle, bio-ecology and DNA barcoding of mosquitoes Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse). The Journal of Communicable Diseases, 49.

  4. Aparna Ravi, M. G., Mudiganti Ram Krishna Rao, Kalaivani, V. S. Kalaiselvi, K. Prabhu, Shruthi Dinakar, G. V. Rao. (2015) GC MS analysis of an Ayurvedic medicine “Ashokarishtam” Der Pharmacia Lettre, 7, 45–52.

  5. Arufe, M. I., Arellano, J. M., García, L., Albendín, G., & Sarasquete, C. (2007). Cholinesterase activity in gilthead seabream (Sparus aurata) larvae: characterization and sensitivity to the organophosphate azinphosmethyl. Aquatic Toxicology, 84(3), 328–336.

    Article  CAS  PubMed  Google Scholar 

  6. Banfield, W. G., Woke, P. A., & Mackay, C. M. (1966). Mosquito transmission of lymphomas. Cancer, 19(10), 1333–1336.

    Article  CAS  PubMed  Google Scholar 

  7. Banfield, W. G., Woke, P. A., MacKay, C. M., & Cooper, H. L. (1965). Mosquito transmission of a reticulum cell sarcoma of hamsters. Science, 148(3674), 1239–1240.

    Article  CAS  PubMed  Google Scholar 

  8. Benelli, G., Iacono, A. L., Canale, A., & Mehlhorn, H. (2016). Mosquito vectors and the spread of cancer: an overlooked connection? Parasitology Research, 115(6), 2131–2137.

    Article  PubMed  Google Scholar 

  9. Bessette, S. (2007) Pesticidal compositions containing isopropyl-containing compounds as pesticidally active ingredients. Google Patents.

    Google Scholar 

  10. Choochote, W., Chaithong, U., Kamsuk, K., Rattanachanpichai, E., Jitpakdi, A., Tippawangkosol, P., Chaiyasit, D., Champakaew, D., Tuetun, B., & Pitasawat, B. (2006). Adulticidal activity against Stegomyia aegypti (Diptera: Culicidae) of three Piper spp. Revista do Instituto de Medicina Tropical de São Paulo, 48(1), 33–37.

    Article  PubMed  Google Scholar 

  11. Fradin, M. S., & Day, J. F. (2002). Comparative efficacy of insect repellents against mosquito bites. New England Journal of Medicine, 347(1), 13–18.

    Article  CAS  PubMed  Google Scholar 

  12. Group, W. S. (2006). Malaria vector control and personal protection. World Health Organization Technical Report Series, 936, 1.

    Google Scholar 

  13. Gubler, D. J. (1998). Resurgent vector-borne diseases as a global health problem. Emerging Infectious Diseases, 4(3), 442–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hales, S., De Wet, N., Maindonald, J., & Woodward, A. (2002). Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. The Lancet, 360(9336), 830–834.

    Article  Google Scholar 

  15. Hu, L., Xue, Y., Zhang, J., Zhu, H., Chen, C., Li, X.-N., Liu, J., Wang, Z., Zhang, Y., & Zhang, Y. (2016). (±)-Japonicols A-D, acylphloroglucinol-based meroterpenoid enantiomers with anti-KSHV activities from Hypericum japonicum. Journal of Natural Products, 79(5), 1322–1328.

    Article  CAS  PubMed  Google Scholar 

  16. Ishiguro, K., Yamaki, M., Kashihara, M., & Takagi, S. (1986). Sarothralen A and B, new antibiotic compounds from Hypericum japonicum. Planta Medica, 52(04), 288–290.

    Article  Google Scholar 

  17. Jeanne, R. L. and Henderson, G. (1992) Non-insecticidal insect repellent. Google Patents.

    Google Scholar 

  18. Katoch, R., Sethi, A., Thakur, N., & Murdock, L. L. (2013). RNAi for insect control: current perspective and future challenges. Applied Biochemistry and Biotechnology, 171(4), 847–873.

    Article  CAS  PubMed  Google Scholar 

  19. Killeen, G. F., Fillinger, U., & Knols, B. G. (2002). Advantages of larval control for African malaria vectors: low mobility and behavioural responsiveness of immature mosquito stages allow high effective coverage. Malaria Journal, 1(1), 8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ko, W., Kang, T., Kim, N., Lee, S., Kim, Y., Ko, G., Ryu, S., & Lee, B. (2000). Lavandulylflavonoids: a new class of in vitro apoptogenic agents from Sophora flavescens. Toxicology In Vitro, 14(5), 429–433.

    Article  CAS  PubMed  Google Scholar 

  21. Komalamisra, N., Trongtokit, Y., Rongsriyam, Y., & Apiwathnasorn, C. (2005). Screening for larvicidal activity in some Thai plants against four mosquito vector species. The Southeast Asian Journal of Tropical Medicine and Public Health, 36(6), 1412–1422.

    PubMed  Google Scholar 

  22. Lee, S. E. (2000) Mosquito larvicidal activity of pipernonaline, a piperidine alkaloid derived from long pepper, Piper longum. Journal of the American Mosquito Control Association- Mosquito News, 16, 245–247, 3.

  23. Lehrer, S. (2010). Anopheles mosquito transmission of brain tumor. Medical Hypotheses, 74(1), 167–168.

    Article  PubMed  Google Scholar 

  24. Lehrer, S. (2010). Association between malaria incidence and all cancer mortality in fifty US States and the District of Columbia. Anticancer Research, 30(4), 1371–1373.

    PubMed  Google Scholar 

  25. Liu, L.-S., Liu, M.-H., & He, J.-Y. (2014). Hypericum japonicum Thunb. ex Murray: phytochemistry, pharmacology, quality control and pharmacokinetics of an important herbal medicine. Molecules, 19(12), 10733–10754.

    Article  CAS  PubMed  Google Scholar 

  26. Madhu, S., & Vijayan, V. (2010). Evaluation of the larvicidal efficacy of extracts from three plants and their synergistic action with propoxur against larvae of the filarial vector Culex quinquefasciatus (Say). Toxicological & Environmental Chemistry, 92(1), 115–126.

    Article  CAS  Google Scholar 

  27. Madhu, S., Vijayan, V., & Shaukath, A. (2011). Bioactivity guided isolation of mosquito larvicide from Piper longum. Asian Pacific Journal of Tropical Medicine, 4(2), 112–116.

    Article  CAS  PubMed  Google Scholar 

  28. Madhumathy, A., Aivazi, A.-A., & Vijayan, V. (2007). Larvicidal efficacy of Capsicum annum against Anopheles stephensi and Culex quinquefasciatus. Journal of Vector Borne Diseases, 44, 223.

    CAS  PubMed  Google Scholar 

  29. Maurya, P., Mohan, L., Sharma, P., Batabyal, L., & Srivastava, C. (2007). Larvicidal efficacy of Aloe barbadensis and Cannabis sativa against the malaria vector Anopheles stephensi (Diptera: Culicidae). Entomological Research, 37(3), 153–156.

    Article  Google Scholar 

  30. Miranda, C., Stevens, J., Helmrich, A., Henderson, M., Rodriguez, R., Yang, Y.-H., Deinzer, M., Barnes, D., & Buhler, D. (1999). Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food and Chemical Toxicology, 37(4), 271–285.

    Article  CAS  PubMed  Google Scholar 

  31. Molyneux, D. H., Hotez, P. J., Fenwick, A., Newman, R. D., Greenwood, B., & Sachs, J. (2009). Neglected tropical diseases and the Global Fund. The Lancet, 373(9660), 296–297.

    Article  Google Scholar 

  32. Narayanan Ravisankar, C. S., Sooriamuthu Seeni, Jerrine Joseph, Nanjian Raaman (2014) GC-MS analysis and anticancer activity of methanol extract of leaves of Hypericum hookerianum Wight & Arn International Journal of Pharmacy and Pharmaceutical Sciences 6, 515–519.

  33. Newberry, G. D., Bain, O. G., Dyer, C. D. and Sterzi, D. (2017) Pesticide and a method of controlling a wide variety of pests. Google Patents.

    Google Scholar 

  34. Pavela, R. (2009). Larvicidal effects of some Euro-Asiatic plants against Culex quinquefasciatus Say larvae (Diptera: Culicidae). Parasitology Research, 105(3), 887–892.

    Article  PubMed  Google Scholar 

  35. Poopathi, S., Thirugnanasambantham, K., Mani, C., Mary, K. A., Mary, B. A., & Balagangadharan, K. (2014). Hexamerin a novel protein associated with Bacillus sphaericus resistance in Culex quinquefasciatus. Applied Biochemistry and Biotechnology, 172(5), 2299–2307.

    Article  CAS  PubMed  Google Scholar 

  36. Reid, B. L., Baker, R. B., Bao, N. N., Koufas, D. A., Kent, G. J. and Baur, P. (2016) Synergistic pesticide compositions. Google Patents.

    Google Scholar 

  37. Sachs, J., & Malaney, P. (2002). The economic and social burden of malaria. Nature, 415(6872), 680–685.

    Article  CAS  PubMed  Google Scholar 

  38. Shaalan, E. A.-S., Canyon, D., Younes, M. W. F., Abdel-Wahab, H., & Mansour, A.-H. (2005). A review of botanical phytochemicals with mosquitocidal potential. Environment International, 31(8), 1149–1166.

    Article  CAS  PubMed  Google Scholar 

  39. Shu-Chen, C., Ruey-Hong, W., Li-Jie, S., Ming-Chih, C., & Huei, L. (2008). Exposure to mosquito coil smoke may be a risk factor for lung cancer in Taiwan. Journal of Epidemiology, 18(1), 19–25.

    Article  Google Scholar 

  40. Silva, B. A., Ferreres, F., Malva, J. O., & Dias, A. C. (2005). Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chemistry, 90(1-2), 157–167.

    Article  CAS  Google Scholar 

  41. Su, J., Fu, P., Shen, Y., Zhang, C., Liang, M., Liu, R., Li, H., & Zhang, W. (2008). Simultaneous analysis of flavonoids from Hypericum japonicum Thunb. ex Murray (Hypericaceae) by HPLC-DAD–ESI/MS. Journal of Pharmaceutical and Biomedical Analysis, 46(2), 342–348.

    Article  CAS  PubMed  Google Scholar 

  42. Taubes, G. (1997). A mosquito bites back. New York Times Magazine, 24, 40–46.

    Google Scholar 

  43. Unal, E. L., Mavi, A., Kara, A. A., Cakir, A., Şengül, M., & Yildirim, A. (2008). Antimicrobial and antioxidant activities of some plants used as remedies in Turkish traditional medicine. Pharmaceutical Biology, 46(3), 207–224.

    Article  Google Scholar 

  44. WHO. (2005) World Health Organization: Guidelines for laboratory and field esting of mosquito larvicides. 2005, WHO/CDS/WHOPES/GCPP/2005.Geneva: WHO; 2005.

  45. Yang, Y.-C., Lee, S.-G., Lee, H.-K., Kim, M.-K., Lee, S.-H., & Lee, H.-S. (2002). A piperidine amide extracted from Piper longum L. fruit shows activity against Aedes aegypti mosquito larvae. Journal of Agricultural and Food Chemistry, 50(13), 3765–3767.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Principal of St. Joseph’s College for the laboratory facilities provided. We acknowledge UGC, Govt. of India, and Kerala State Council for Science Technology and Environment (KSCSTE) for funds under Major Research Project (No. 27/SRSLS/2013/CSTE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Embalil Mathachan Aneesh.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puthur, S., Anoopkumar, A.N., Rebello, S. et al. Hypericum japonicum: a Double-Headed Sword to Combat Vector Control and Cancer. Appl Biochem Biotechnol 186, 1–11 (2018). https://doi.org/10.1007/s12010-018-2713-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2713-7

Keywords

Navigation