Acetone–Butanol–Ethanol Production from Waste Seaweed Collected from Gwangalli Beach, Busan, Korea, Based on pH-Controlled and Sequential Fermentation Using Two Strains

  • In Yung Sunwoo
  • Nguyen Trung Hau
  • Chae Hun Ra
  • Gwi-Taek Jeong
  • Sung-Koo Kim


The optimal conditions for acetone–butanol–ethanol (ABE) production were evaluated using waste seaweed from Gwangalli Beach, Busan, Korea. The waste seaweed had a fiber and carbohydrate, content of 48.34%; these are the main resources for ABE production. The optimal conditions for obtaining monosaccharides based on hyper thermal (HT) acid hydrolysis of waste seaweed were slurry contents of 8%, sulfuric acid concentration of 138 mM, and treatment time of 10 min. Enzymatic saccharification was performed using 16 unit/mL Viscozyme L, which showed the highest affinity (K m  = 1.81 g/L). After pretreatment, 34.0 g/L monosaccharides were obtained. ABE fermentation was performed with single and sequential fermentation of Clostridium acetobutylicum and Clostridium tyrobutyricum; this was controlled for pH. A maximum ABE concentration of 12.5 g/L with YABE 0.37 was achieved using sequential fermentation with C. tyrobutyricum and C. acetobutylicum. Efficient ABE production from waste seaweed performed using pH-controlled culture broth and sequential cell culture.


Waste seaweed Hyper thermal acid hydrolysis pH-controlled fermentation Sequential fermentation ABE production 



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2016R1D1A1A09918683), Korea.

Compliance with Ethical Standards

Conflict of Interest

The authors indicate that they have no conflict of interest.


  1. 1.
    Sunwoo, I. Y., Kwon, J. E., Nguyen, T. H., Ra, C. H., Jeong, G. T., & Kim, S. K. (2017). Bioethanol production using waste seaweed obtained from Gwangalli beach, Busan, Korea by co-culture of yeasts with adaptive evolution. Applied Biochemistry and Biotechnology, 183(3), 966–979. CrossRefGoogle Scholar
  2. 2.
    Ye, N. H., Zhang, X. W., Mao, Y. Z., Liang, C. W., Xu, D., Zou, J., Zhuang, Z. M., & Wang, Q. Y. (2011). ‘Green tides’ are overwhelming the coastline of our blue planet: taking the world’s largest example. Ecological Research, 26(3), 477–485. CrossRefGoogle Scholar
  3. 3.
    van der Wal, H., Sperber, B. L., Houweling-Tan, B., Bakker, R. R., Brandenburg, W., & López-Contreras, A. M. (2013). Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresource Technology, 128, 431–437. CrossRefGoogle Scholar
  4. 4.
    Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K., Kim, J., & Jung, K. S. (2008). Fermentative butanol production by Clostridia. Biotechnology and Bioengineering, 101(2), 209–228. CrossRefGoogle Scholar
  5. 5.
    Jones, D. T., & Woods, D. R. (1986). Acetone-butanol fermentation revisited. Microbiological Reviews, 50(4), 484–524.Google Scholar
  6. 6.
    Zhu, Y., & Yang, S. T. (2004). Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. Journal of Biotechnology, 110(2), 143–157. CrossRefGoogle Scholar
  7. 7.
    Guo, T., Sun, B., Jiang, M., Wu, H., Du, T., Tang, Y., Wei, P., & Ouyang, P. (2012). Enhancement of butanol production and reducing power using a two-stage controlled-pH strategy in batch culture of Clostridium acetobutylicum XY16. World Journal of Microbiology and Biotechnology, 28(7), 2551–2558. CrossRefGoogle Scholar
  8. 8.
    Matanjun, P., Mohamed, S., Mustapha, N. M., & Muhammad, K. (2009). Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. Journal of Applied Phycology, 21(1), 75–80. CrossRefGoogle Scholar
  9. 9.
    Ra, C. H., Jeong, G. T., & Kim, S. K. (2017). Hyper-thermal acid hydrolysis and adsorption treatment of red seaweed, Gelidium amansii for butyric acid production with pH control. Bioprocess and Biosystems Engineering, 40(3), 403–411. CrossRefGoogle Scholar
  10. 10.
    Harun, R., & Danquah, M. K. (2011). Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chemical Engineering Journal, 168(3), 1079–1084. CrossRefGoogle Scholar
  11. 11.
    Sanjay, G., & Sugunan, S. (2007). Glucoamylase immobilized on montmorillonite: influence of nature of binding on surface properties of clay-support and activity of enzyme. Journal of Porous Materials, 14(2), 127–136. CrossRefGoogle Scholar
  12. 12.
    Saha, B. C., Yoshida, T., Cotta, M. A., & Sonomoto, K. (2013). Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Industrial Crops and Products, 44, 367–372. CrossRefGoogle Scholar
  13. 13.
    Qi, L., Mui, Y. F., Lo, S. W., Lui, M. Y., Akien, G. R., & Horváth, I. T. (2014). Catalytic conversion of fructose, glucose, and sucrose to 5-(hydroxymethyl) furfural and levulinic and formic acids in γ-valerolactone as a green solvent. ACS Catalysis, 4(5), 1470–1477. CrossRefGoogle Scholar
  14. 14.
    Tsigie, Y. A., Wu, C. H., Huynh, L. H., Ismadji, S., & Ju, Y. H. (2013). Bioethanol production from Yarrowia lipolytica Po1g biomass. Bioresource Technology, 145, 210–216. CrossRefGoogle Scholar
  15. 15.
    Su, J., Shen, F., Qiu, M., & Qi, X. (2017). High-yield production of levulinic acid from pretreated cow dung in dilute acid aqueous solution. Molecules, 22(2), 285. CrossRefGoogle Scholar
  16. 16.
    Ahn, D. J., Kim, S. K., & Yun, H. S. (2012). Optimization of pretreatment and saccharification for the production of bioethanol from water hyacinth by Saccharomyces cerevisiae. Bioprocess and Biosystems Engineering, 35(1–2), 35–41. CrossRefGoogle Scholar
  17. 17.
    Borines, M. G., de Leon, R. L., & Cuello, J. L. (2013). Bioethanol production from the macroalgae Sargassum spp. Bioresource Technology, 138, 22–29. CrossRefGoogle Scholar
  18. 18.
    Jiang, L., Wang, J., Liang, S., Wang, X., Cen, P., & Xu, Z. (2009). Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses. Bioresource Technology, 100(13), 3403–3409. CrossRefGoogle Scholar
  19. 19.
    Zhu, Y., Wu, Z., & Yang, S. T. (2002). Butyric acid production from acid hydrolysate of corn fiber by Clostridium tyrobutyricum in a fibrous-bed bioreactor. Process Biochemistry, 38(5), 657–666. CrossRefGoogle Scholar
  20. 20.
    Liu, S., Bischoff, K. M., Leathers, T. D., Qureshi, N., Rich, J. O., & Hughes, S. R. (2013). Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium tyrobutyricum strain RPT-4213. Bioresource Technology, 143, 322–329. CrossRefGoogle Scholar
  21. 21.
    Yang, X., Tu, M., Xie, R., Adhikari, S., & Tong, Z. (2013). A comparison of three pH control methods for revealing effects of undissociated butyric acid on specific butanol production rate in batch fermentation of Clostridium acetobutylicum. AMB Express, 3(1), 3. CrossRefGoogle Scholar
  22. 22.
    Millat, T., Janssen, H., Bahl, H., Fischer, R. J., & Wolkenhauer, O. (2013). Integrative modelling of pH-dependent enzyme activity and transcriptomic regulation of the acetone–butanol–ethanol fermentation of Clostridium acetobutylicum in continuous culture. Microbial biotechnology, 6(5), 526–539.Google Scholar
  23. 23.
    Haus, S., Jabbari, S., Millat, T., Janssen, H., Fischer, R. J., Bahl, H., King, J. R., & Wolkenhauer, O. (2011). A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production by Clostridium acetobutylicum in continuous culture. BMC Systems Biology, 5(1), 10–23. CrossRefGoogle Scholar
  24. 24.
    Li, S. Y., Srivastava, R., Suib, S. L., Li, Y., & Parnas, R. S. (2011). Performance of batch, fed-batch, and continuous A–B–E fermentation with pH-control. Bioresource Technology, 102(5), 4241–4250. CrossRefGoogle Scholar
  25. 25.
    Huang, W. C., Ramey, D. E., & Yang, S. T. (2004). Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous bed bioreactor. Applied Biochemistry and Biotechnology, 113, 887–898.CrossRefGoogle Scholar
  26. 26.
    Li, L., Ai, H., Zhang, S., Li, S., Liang, Z., Wu, Z. Q., Yang, S. T., & Wang, J. F. (2013). Enhanced butanol production by coculture of Clostridium beijerinckii and Clostridium tyrobutyricum. Bioresource Technology, 143, 397–404. CrossRefGoogle Scholar
  27. 27.
    Monot, F., Engasser, J. M., & Petitdemange, H. (1984). Influence of pH and undissociated butyric acid on the production of acetone and butanol in batch cultures of Clostridium acetobutylicum. Applied Microbiology and Biotechnology, 19(6), 422–426. CrossRefGoogle Scholar
  28. 28.
    Hüsemann, M. H., & Papoutsakis, E. T. (1988). Solventogenesis in Clostridium acetobutylicum fermentations related to carboxylic acid and proton concentrations. Biotechnology and Bioengineering, 32(7), 843–852. CrossRefGoogle Scholar
  29. 29.
    Fond, O., Matta-Ammouri, G., Petitdemange, H., & Engasser, J. M. (1985). The role of acids on the production of acetone and butanol by Clostridium acetobutylicum. Applied Microbiology and Biotechnology, 22, 195–200.CrossRefGoogle Scholar
  30. 30.
    Hüsemann, M. H., & Papoutsakis, E. T. (1990). Effects of propionate and acetate additions on solvent production in batch cultures of Clostridium acetobutylicum. Applied and Environmental Microbiology, 56(5), 1497–1500.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • In Yung Sunwoo
    • 1
  • Nguyen Trung Hau
    • 1
  • Chae Hun Ra
    • 1
  • Gwi-Taek Jeong
    • 1
  • Sung-Koo Kim
    • 1
  1. 1.Department of BiotechnologyPukyong National UniversityBusanSouth Korea

Personalised recommendations