Skip to main content
Log in

In Vitro Screening of Indigenous Lactobacillus Isolates for Selecting Organisms with Better Health-Promoting Attributes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lactobacilli have several attributes that provide health benefits to the host. The aim of this study was to screen indigenous lactobacilli from human gut and fermented foods for such attributes as production of β- and α-galactosidase and also their ability to reduce serum cholesterol. Lactobacilli were cultured on MRS broth and β-galactosidase activity was determined using o-nitrophenyl-β-D-galactopyranoside (ONPG) as a substrate. Three isolates Lactobacillus fermentum GPI-3 and L. fermentum GPI-6 and Lactobacillus salivarius GPI-1(S) showed better β-galactosidase activity than the standard strains Lactobacillus rhamnosus GG (LGG) and Lactobacillus plantarum ATCC 8014. The isolates showed variability in assimilating cholesterol during growth. Several isolates showed excellent cholesterol-lowering ability compared to standard strains LGG and L. plantarum ATCC 8014. Isolate L. rhamnosus SCB being the highest acid producer (pH 4.38) also showed the highest cholesterol reduction compared to other strains including standard strains. The ability of these isolates to produce α-galactosidase was also studied and the maximum α-galactosidase activity was found in isolate L. salivarius GPI-1(S) followed by L. fermentum FA-5 and Lactobacillus helveticus FA-7. This study therefore reports Lactobacillus isolates that have superior probiotic properties when compared to the standard strains; hence, they could be considered as potential probiotic strains, which can provide health benefits to the Indian population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wu, Y., Zhang, Q., Ren, Y., & Ruan, Z. (2017). Effect of probiotic Lactobacillus on lipid profile: a systematic review and meta-analysis of randomized, controlled trials. PLoS One, 12(6), e0178868. https://doi.org/10.1371/journal.pone.0178868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van den Elsen, L. W. J., Poyntz, H. C., Weyrich, L. S., Young, W., & Forbes-Blom, E. E. (2017). Embracing the gut microbiota: the new frontier for inflammatory and infectious diseases. Clin. Transl. Immunology, 6(1), e125. https://doi.org/10.1038/cti.2016.91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jariwala, R., Mandal, H., & Bagchi, T. (2017). Indigenous lactobacilli strains of food and human sources reverse enteropathogenic E. coli O26:H11-induced damage in intestinal epithelial cell lines: effect on redistribution of tight junction proteins. Microbiology, 163(9), 1263–1272. https://doi.org/10.1099/mic.0.000507

    Article  CAS  PubMed  Google Scholar 

  4. Sánchez, B., Delgado, S., Blanco-Míguez, A., Lourenço, A., Gueimonde, M., & Margolles, A. (2017). Probiotics, gut microbiota, and their influence on host health and disease. Molecular Nutrition & Food Research, 61(1). https://doi.org/10.1002/mnfr.201600240

  5. Habtamu, L. D., Ashenafi, M., Taddese, K., Birhanu, K., & Getaw, T. (2015). Occurrence of lactose intolerance among Ethiopians. J. Food Process. Technol., 6, 1.

    Google Scholar 

  6. Pithva, S., Shekh, S., Dave, J., & Vyas, B. R. (2014). Probiotic attributes of autochthonous Lactobacillus rhamnosus strains of human origin. Applied Biochemistry and Biotechnology, 173(1), 259–277. https://doi.org/10.1007/s12010-014-0839-9

    Article  CAS  PubMed  Google Scholar 

  7. Carević, M. B., Vukašinović-Sekulić, M. S., Banjanac, K. M., Milivojević, A. D., Ćorović, M. M., & Bezbradica, D. I. (2017). Characterization of β-galactosidase from Lactobacillus acidophilus: stability and kinetic study. Adv. Technol., 6(1), 5–13. https://doi.org/10.5937/savteh1701005C

    Article  Google Scholar 

  8. Michael, D. R., Davies, T. S., Moss, J. W. E., Calvente, D. L., Ramji, D. P., Marchesi, J. R., Pechlivanis, A., Plummer, S. F., & Hughes, T. R. (2017). The anti-cholesterolaemic effect of a consortium of probiotics: an acute study in C57BL/6J mice. Scientific Reports, 7(1), 2883. https://doi.org/10.1038/s41598-017-02889-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ghahremani, E., Mardani, M., & Rezapour, S. (2015). Phenotypic and genotypic characterization of lactic acid bacteria from traditional cheese in Khorramabad city of Iran with probiotic potential. Applied Biochemistry and Biotechnology, 175(5), 2516–2527. https://doi.org/10.1007/s12010-014-1434-9

    Article  CAS  PubMed  Google Scholar 

  10. Shehata, M. G., El Sohaimy, S. A., El-Sahn, M. A., & Youssef, M. M. (2016). Screening of isolated potential probiotic lactic acid bacteria for cholesterol lowering property and bile salt hydrolase activity. Annals of Agricultural Science, 61(1), 65–75. https://doi.org/10.1016/j.aoas.2016.03.001

    Article  Google Scholar 

  11. Mahmoudi, I., Moussa, O., & Hassouna, M. (2017). Symbiotic, hypocholesterolemic and antioxidant effects of potential probiotic lactobacilli strains isolated from Tunisian camel milk. Advances in Microbiology, 7(04), 328–342. https://doi.org/10.4236/aim.2017.74027

    Article  Google Scholar 

  12. Jayashree, S., Pooja, S., Pushpanathan, M., Rajendhran, J., & Gunasekaran, P. (2014). Identification and characterization of bile salt hydrolase genes from the genome of Lactobacillus fermentum MTCC 8711. Applied Biochemistry and Biotechnology, 174(2), 855–866. https://doi.org/10.1007/s12010-014-1118-5

    Article  CAS  PubMed  Google Scholar 

  13. Costabile, A., Buttarazzi, I., Kolida, S., Quercia, S., Baldini, J., Swann, J. R., Brigidi, P., & Gibson, G. R. (2017). An in vivo assessment of the cholesterol-lowering efficacy of Lactobacillus plantarum ECGC 13110402 in normal to mildly hypercholesterolaemic adults. PLoS One, 12(12), e0187964. https://doi.org/10.1371/journal.pone.0187964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Werner, A., Kuipers, F., & Verkade, H. J. (2004). Fat absorption and lipid metabolism in cholestasis. In Molecular pathogenesis of cholestasis, vol. 1: (Trauner, M. and Jansen, Peter L.M., eds.), Landes Bioscience (pp. 314–328). USA. https://doi.org/10.1007/978-1-4419-9034-1_23

  15. Kumar, M., Nagpal, R., Kumar, R., Hemalatha, R., Verma, V., Kumar, A., Chakraborty, C., Singh, B., Marotta, F., Jain, S., & Yadav, H. (2012). Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Experimental Diabetes Research, 2012, 1–14. https://doi.org/10.1155/2012/902917

    Article  CAS  Google Scholar 

  16. Aquino, M. G. B., Ebuen, B. U., Widwidan, C., & Soriano, G. P. (2017). Cholesterol lowering potential of Lactobacillus brevis. International Journal of Research Studies in Microbiology and Biotechnology, 3, 7–10.

    Google Scholar 

  17. Kumar, A., Kumar, M., Ghosh, M., & Ganguli, A. (2013). Modeling in vitro cholesterol reduction in relation to growth of probiotic Lactobacillus casei. Microbiology and Immunology, 57(2), 100–110. https://doi.org/10.1111/1348-0421.12008

    Article  CAS  PubMed  Google Scholar 

  18. LeBlanc, J. G., Ledue-Clier, F., Bensaada, M., de Giori, G. S., Guerekobaya, T., Sesma, F., Juillard, V., Rabot, S., & Piard, J. C. (2008). Ability of Lactobacillus fermentum to overcome host α-galactosidase deficiency, as evidenced by reduction of hydrogen excretion in rats consuming soya α-galacto-oligosaccharides. BMC Microbiology, 8(1), 22–30. https://doi.org/10.1186/1471-2180-8-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mishra, B. K., Hati, S., Das, S., Mishra, S., & Mandal, S. (2017). α-galactosidase and β-glucosidase enzyme activity of lactic strains isolated from traditional fermented foods of West Garo Hills, Meghalaya. International Journal of Current Microbiology and Applied Sciences, 6, 1193–1201.

    CAS  Google Scholar 

  20. Liu, X., Champagne, C. P., Lee, B. H., Boye, J. I., & Casgrain, M. (2014). Thermostability of probiotics and their α-galactosidases and the potential for bean products. Biotechnology Research International, 2014, 472723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Silvestroni, A., Connes, C., Sesma, F., de Giori, G. S., & Piard, J. C. (2002). Characterization of the melA locus for alpha-galactosidase in Lactobacillus plantarum. Applied and Environmental Microbiology, 68(11), 5464–5471. https://doi.org/10.1128/AEM.68.11.5464-5471.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar, M., Rakesh, S., Nagpal, R., Hemalatha, R., Ramakrishna, A., Sudarshan, V., Ramagoni, R., Shujauddin, M., Verma, V., Kumar, A., Tiwari, A., Singh, B., & Kumar, R. (2013). Probiotic Lactobacillus rhamnosus GG and Aloe Vera gel improve lipid profiles in hypercholesterolemic rats. Nutrition, 29(3), 574–579. https://doi.org/10.1016/j.nut.2012.09.006

    Article  CAS  PubMed  Google Scholar 

  23. Dhanani, A.S. (2014) The interaction of Lactobacillus strains with intestinal epithelial cell lines. PhD thesis, The Maharaja Sayajirao University of Baroda, Vadodara.

  24. Mandal, H., Jariwala, R., & Bagchi, T. (2015). Isolation and characterization of lactobacilli from human faeces and indigenous fermented foods for their potential application as probiotics. Canadian Journal of Microbiology, 62, 349–359.

    Article  CAS  PubMed  Google Scholar 

  25. Miller, J. H. (1972). Assay of β-galactosidase. In Experiments in molecular genetics, Cold Spring Harbor Laboratory Press (pp. 352–355). New York.

  26. Donkor, O. N., Henriksson, A., Vasiljevic, T., & Shah, N. P. (2007). α-Galactosidase and proteolytic activities of selected probiotic and dairy cultures in fermented soymilk. Food Chemistry, 104(1), 10–20. https://doi.org/10.1016/j.foodchem.2006.10.065

    Article  CAS  Google Scholar 

  27. Scalabrini, P., Rossi, M., Spettoli, P., & Matteuzzi, D. (1998). Characterization of Bifidobacterium strains for use in soymilk fermentation. International Journal of Food Microbiology, 39(3), 213–219. https://doi.org/10.1016/S0168-1605(98)00005-1

    Article  CAS  PubMed  Google Scholar 

  28. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  29. Heyman, M. B. (2006). Lactose intolerance in infants, children, and adolescents. Pediatrics, 118(3), 1279–1286. https://doi.org/10.1542/peds.2006-1721

    Article  PubMed  Google Scholar 

  30. Azcarate-Peril, M. A., Ritter, A. J., Savaiano, D., Monteagudo-Mera, A., Anderson, C., Magness, S., & Klaenhammer, T. R. (2017). Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proceedings of the National Academy of Sciences, 114(3), E367–E375. https://doi.org/10.1073/pnas.1606722113

    Article  CAS  Google Scholar 

  31. Gheytanchi, E., Heshmati, F., Shargh, B. K., Nowroozi, J., & Movahedzadeh, F. (2010). Study on b-galactosidase enzyme produced by isolated lactobacilli from milk and cheese. African Journal of Microbiology Research, 4, 454–458.

    CAS  Google Scholar 

  32. Meira, S. M. M., Helfer, V. E., Velho, R. V., Lopes, F. C., & Brandelli, A. (2012). Probiotic potential of Lactobacillus spp. isolated from Brazilian regional ovine cheese. The Journal of Dairy Research, 79(01), 119–127. https://doi.org/10.1017/S0022029911000884

    Article  CAS  PubMed  Google Scholar 

  33. Belicová, A., Mikulášová, M., & Dušinský, R. (2013). Probiotic potential and safety properties of Lactobacillus plantarum from Slovakbryndza cheese. BioMed Research International, 2013, 760298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fabian, E., & Elmadfa, I. (2006). Influence of daily consumption of probiotic and conventional yoghurt on the plasma lipid profile in young healthy women. Annals of Nutrition & Metabolism, 50(4), 387–393. https://doi.org/10.1159/000094304

    Article  CAS  Google Scholar 

  35. Homayouni, A., Payahoo, L., & Azizi, A. (2012). Effects of probiotics on lipid profile: A review. American Journal of Food Technology, 7, 251–265.

    Article  Google Scholar 

  36. Guan, X., Xu, Q., Zheng, Y., Qian, L., & Lin, B. (2017). Screening and characterization of lactic acid bacterial strains that produce fermented milk and reduce cholesterol levels. Brazilian Journal of Microbiology, 48(4), 730–739. https://doi.org/10.1016/j.bjm.2017.02.011

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tomaro-Duchesneau, C., Jones, M. L., Shah, D., Jain, P., Saha, S., & Prakash, S. (2014). Cholesterol assimilation by Lactobacillus probiotic bacteria: an in vitro investigation. BioMed Research International, 2014, 9.

    Article  Google Scholar 

  38. Liong, M. T., & Shah, N. P. (2006). Effects of a Lactobacillus casei synbiotic on serum lipoprotein, intestinal microflora, and organic acids in rats. Journal of Dairy Science, 89(5), 1390–1399. https://doi.org/10.3168/jds.S0022-0302(06)72207-X

    Article  CAS  PubMed  Google Scholar 

  39. Liong, M. T., & Shah, N. P. (2005). Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. Journal of Dairy Science, 88(1), 55–66. https://doi.org/10.3168/jds.S0022-0302(05)72662-X

    Article  CAS  PubMed  Google Scholar 

  40. Lye, H. S., Rusul, G., & Liong, M. T. (2010). Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. International Dairy Journal, 20(3), 169–175. https://doi.org/10.1016/j.idairyj.2009.10.003

    Article  CAS  Google Scholar 

  41. Lye, H. S., Rusul, G., & Liong, M. T. (2010). Removal of cholesterol by lactobacilli via incorporation of and conversion to coprostanol. Journal of Dairy Science, 93(4), 1383–1392. https://doi.org/10.3168/jds.2009-2574

    Article  CAS  PubMed  Google Scholar 

  42. de Preter, V., Vanhoutte, T., Huys, G., Swings, J., de Vuyst, L., Rutgeerts, P., & Verbeke, K. (2007). Effects of Lactobacillus casei Shirota, Bifidobacterium breve, and oligofructose-enriched inulin on colonic nitrogen-protein metabolism in healthy humans. American Journal of Physiology. Gastrointestinal and Liver Physiology, 292, 358–368.

    Article  CAS  Google Scholar 

  43. Lambert, J. M., Bongers, R. S., de Vos, W. M., & Kleerebezem, M. (2008). Functional analysis of four bile salt hydrolase and penicillin acylase family members in Lactobacillus plantarum WCFS1. Applied and Environmental Microbiology, 74(15), 4719–4726. https://doi.org/10.1128/AEM.00137-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pereira, D. I., McCartney, A. L., & Gibson, G. R. (2003). An in vitro study of the probiotic potential of a bile salt hydrolyzing Lactobacillus fermentum strain, and determination of its cholesterol-lowering properties. Applied and Environmental Microbiology, 69(8), 4743–4752. https://doi.org/10.1128/AEM.69.8.4743-4752.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gilliland, S. E., Nelson, C. R., & Maxwell, C. (1985). Assimilation of cholesterol by Lactobacillus acidophilus. Applied and Environmental Microbiology, 49(2), 377–381.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Liong, M. T., & Shah, N. P. (2005). Bile salt deconjugation ability, bile salt hydrolase activity and cholesterol co-precipitation ability of lactobacilli strains. International Dairy Journal, 15(4), 391–398. https://doi.org/10.1016/j.idairyj.2004.08.007

    Article  CAS  Google Scholar 

  47. Kuda, T., Yazaki, T., Ono, M., Takahashi, H., & Kimura, B. (2013). In vitro cholesterol-lowering properties of Lactobacillus plantarum AN6 isolated from aji-narezushi. Letters in Applied Microbiology, 57(3), 187–192. https://doi.org/10.1111/lam.12094

    Article  CAS  PubMed  Google Scholar 

  48. Miremadi, F., Ayyash, M., Sherkat, F., & Stojanovska, L. (2014). Cholesterol reduction mechanisms and fatty acid composition of cellular membranes of probiotic lactobacilli and bifidobacteria. Journal of Functional Foods, 9, 295–305. https://doi.org/10.1016/j.jff.2014.05.002

    Article  CAS  Google Scholar 

  49. Klaver, F. A., & van der Meer, R. (1993). The assumed assimilation of cholesterol by lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Applied and Environmental Microbiology, 59(4), 1120–1124.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Brashears, M. M., Gilliland, S. E., & Buck, L. M. (1998). Bile salt deconjugation and cholesterol removal from media by Lactobacillus casei. Journal of Dairy Science, 81(8), 2103–2110. https://doi.org/10.3168/jds.S0022-0302(98)75785-6

    Article  CAS  PubMed  Google Scholar 

  51. Adeyemo, S. M., & Onilude, A. A. (2014). Reduction of oligosaccharide content of soybeans by the action of L. plantarum isolated from fermented cereals. African Journal of Biotechnology, 13(37), 3790–3796. https://doi.org/10.5897/AJB2013.13398

    Article  CAS  Google Scholar 

  52. Yang, D., Tian, G., Du, F., Zhao, Y., Zhao, L., Wang, H., & Ng, T. B. (2015). A fungal alpha-galactosidase from Pseudobalsamia microspora capable of degrading raffinose family oligosaccharides. Applied Biochemistry and Biotechnology, 176(8), 2157–2169. https://doi.org/10.1007/s12010-015-1705-0

    Article  CAS  PubMed  Google Scholar 

  53. Kidd, M. T., Morgan Jr., G. W., Zumwalt, C. D., Price, C. J., Welch, P. A., Brinkhaus, F. L., & Fontana, E. A. (2001). α-Galactosidase enzyme supplementation to corn and soybean meal broiler diets. Journal of Applied Poultry Research, 10(2), 186–193. https://doi.org/10.1093/japr/10.2.186

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Biotechnology, New Delhi, India, for research support to Prof. Tamishraha Bagchi (grant number BT/PR14954/FNS/20/496/2010).

Funding

Hemanti Mandal is supported by a fellowship from the Department of Biotechnology, New Delhi, India (DBT-JRF/2012-13/146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamishraha Bagchi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, H., Bagchi, T. In Vitro Screening of Indigenous Lactobacillus Isolates for Selecting Organisms with Better Health-Promoting Attributes. Appl Biochem Biotechnol 185, 1060–1074 (2018). https://doi.org/10.1007/s12010-018-2709-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2709-3

Keywords

Navigation