Skip to main content
Log in

Nitrile Metabolizing Enzymes in Biocatalysis and Biotransformation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nitrile metabolizing enzymes, i.e., aldoxime dehydratase, hydroxynitrile lyase, nitrilase, nitrile hydratase, and amidase, are the key catalysts in carbon nitrogen triple bond anabolism and catabolism. Over the past several years, these enzymes have drawn considerable attention as prominent biocatalysts in academia and industries because of their wide applications. Research on various aspects of these biocatalysts, i.e., sources, screening, function, purification, molecular cloning, structure, and mechanisms, has been conducted, and bioprocesses at various scales have been designed for the synthesis of myriads of useful compounds. This review is focused on the potential of nitrile metabolizing enzymes in the production of commercially important fine chemicals such as nitriles, carboxylic acids, and amides. A number of opportunities and challenges of nitrile metabolizing enzymes in bioprocess development for the production of bulk and fine chemicals are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Howden, A. J. M., & Preston, G. M. (2009). Nitrilase enzymes and their role in plant–microbe interactions. Microbial Biotechnology, 2(4), 441–451. https://doi.org/10.1111/j.1751-7915.2009.00111.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bhalla, T.C., Sharma, N., & Bhatia, R.K. (2012). Microbial degradation of cyanides and nitrile. In: Satyanarayan T (Eds.), Microorganisms in Environmental Management. Springer Netherlands, pp. 569–587.

  3. Martınkova, L., & Kren, V. (2010). Biotransformation with nitrilases. Currunt Opinion in Chemical Biology, 14(2), 130–137. https://doi.org/10.1016/j.cbpa.2009.11.018.

    Article  CAS  Google Scholar 

  4. Gong, J. S., Lu, Z. M., Li, H., Shi, J. S., Zhou, Z. M., & Xu, Z. H. (2012). Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microbial Cell Factory, 11(1), 142. https://doi.org/10.1186/1475-2859-11-142.

    Article  CAS  Google Scholar 

  5. Wang, M. X. (2015). Enantioselective biotransformation of nitriles in organic synthesis. Accounts of Chemical Research, 48(3), 602–611. https://doi.org/10.1021/ar500406s.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, J., Zheng, R., Zheng, Y., & Shen, Y. (2009). Microbial transformation of nitriles to high-value acids or amides. Advance in Biochemical Engineering/Biotechnology, 113, 33–77.

    CAS  Google Scholar 

  7. Thimann, K. V., & Mahadevan, S. (1964). Nitrilase I: occurrence, preparation, and general properties of the enzyme. Archives in Biochemistry and Biophysics, 105(1), 133–141. https://doi.org/10.1016/0003-9861(64)90244-9.

    Article  CAS  Google Scholar 

  8. Asano, Y., Yasuda, T., Tani, T., & Yamada, H. (1982). A new enzymatic method of acrylamide production. Agriculture and Biological Chemistry, 46, 1183–1199.

    CAS  Google Scholar 

  9. Kato, Y., Nakamura, K., Sakiyama, H., Mayhew, S. G., & Asano, Y. (2000). Novel heme-containing lyase, phenylacetaldoxime dehydratase from Bacillus sp. strain OxB-1: purification, characterization, and molecular cloning of the gene. Biochemistry Journal, 39(4), 800–809. https://doi.org/10.1021/bi991598u.

    Article  CAS  Google Scholar 

  10. Oinuma, K., Hashimoto, Y., Konishi, K., Goda, M., Noguchi, T., Higashibata, H., & Kobayashi, M. (2003). Novel aldoxime dehydratase involved in carbon-nitrogen triple bond synthesis of Pseudomonas chlororaphis B23. Journal of Biological Chemistry, 278(32), 29600–29608. https://doi.org/10.1074/jbc.M211832200.

    Article  CAS  PubMed  Google Scholar 

  11. Pinakoulaki, E., Koutsoupakis, C., Sawai, H., Pavlou, A., Kato, Y., Asano, Y., & Aono, S. (2011). Aldoxime dehydratase: probing the heme environment involved in the synthesis of the carbon nitrogen triple bond. Journal of Physical Chemistry B, 115(44), 13012–13018. https://doi.org/10.1021/jp205944e.

    Article  CAS  Google Scholar 

  12. Yamaguchi, T., & Asano, Y. (2015). Complete genome sequence of an aldoxime degrader, Bacillus sp. OxB-1. Genome Announcement, 3(1), e00025–e00015. https://doi.org/10.1128/genomeA.00025-15.

    Article  Google Scholar 

  13. Sharma, M., Sharma, N. N., & Bhalla, T. C. (2005). Hydroxynitrile lyases: at the interface of biology and chemistry. Enzyme and Microbial Technology, 37(3), 279–294. https://doi.org/10.1016/j.enzmictec.2005.04.013.

    Article  CAS  Google Scholar 

  14. Lanfranchi, E., & Sheldon, R. A. (2013). Recent developments in hydroxynitrile lyases for industrial biotechnology. Recent Patents on Biotechnology, 7(3), 197–206. https://doi.org/10.2174/18722083113076660010.

    Article  CAS  PubMed  Google Scholar 

  15. Kassim, M. A., & Rumbold, K. (2014). HCN production and hydroxynitrile lyase: a natural activity in plants and a renewed biotechnological interest. Biotechnology Letters, 36(2), 223–228. https://doi.org/10.1007/s10529-013-1353-9.

    Article  CAS  PubMed  Google Scholar 

  16. Sharma, M., Sharma, N. N., & Bhalla, T. C. (2009). Amidases : versatile enzymes in nature. Review in Environment Science and Biotechnology, 8(4), 343–366. https://doi.org/10.1007/s11157-009-9175-x.

    Article  CAS  Google Scholar 

  17. Chand, D., Kumar, H., Sankhian, U. D., Kumar, D., Vitzthum, F., & Bhalla, T. C. (2004). Treatment of simulated wastewater containing toxic amides by immobilized Rhodococcus rhodochrous NHB-2 using a highly 5-stage plug flow reactor. World Journal of Microbiology and Biotechnology, 20(7), 679–686. https://doi.org/10.1007/s11274-004-2158-8.

    Article  CAS  Google Scholar 

  18. Fournand, D., Bigey, F., Ratomahenina, R., Arnaud, A., & Galzy, P. (1997). Biocatalyst mprovement for the production of short-chain hydroxamic acids. Enzyme and Microbial Technology, 20(6), 424–431. https://doi.org/10.1016/S0141-0229(96)00170-6.

    Article  CAS  Google Scholar 

  19. Bhatia, R. K., Bhatia, S. K., Mehta, P. K., & Bhalla, T. C. (2013a). Production and characterization of acyl transfer activity of amidase from Alcaligenes sp. MTCC 10674 for synthesis of hydroxamic acids. Journal of Microbial and Biochemical Technology, 5, 1–5.

    CAS  Google Scholar 

  20. Bhatia, R. K., Bhatia, S. K., Mehta, P. K., & Bhalla, T. C. (2013b). Bench scale production of benzohydroxamic acid using acyl transfer activity of amidase from Alcaligenes sp. MTCC 10674. Journal of Industrial Microbiology and Biotechnology, 40(1), 21–27. https://doi.org/10.1007/s10295-012-1206-x.

    Article  CAS  PubMed  Google Scholar 

  21. Baum, S., van Rantwijk, F., & Stolz, A. (2012). Application of a recombinant Escherichia coli whole-cell catalyst expressing hydroxynitrile lyase and nitrilase activities in ionic liquids for the production of (S)-mandelic acid and (S)-mandeloamide. Advanced Synthesis and Catalysis, 354(1), 113–122. https://doi.org/10.1002/adsc.201100391.

    Article  CAS  Google Scholar 

  22. Scholz, K. E., Okrob, D., Kopka, B., Grunberger, A., Pohl, M., Jaeger, K., & Krauss, U. (2012). Synthesis of chiral cyanohydrins by recombinant Escherichia coli cells in a micro-aqueous reaction system. Applied and Environment Microbiology, 78(14), 5025–5027. https://doi.org/10.1128/AEM.00582-12.

    Article  CAS  Google Scholar 

  23. Alagoz, D., Tukel, S. S., & Yildirim, D. (2015). Enantioselective synthesis of various cyanohydrins using covalently immobilized preparations of hydroxynitrile lyase from Prunus dulcis. Applied and Environment Microbiology, 177, 1348–1363.

    CAS  Google Scholar 

  24. Metzner, R., Okazaki, S., Asano, Y., & Groger, H. (2014). Cyanide-free enantioselective synthesis of nitriles: synthetic proof of a biocatalytic concept and mechanistic insights. ChemCatChem, 6(11), 3105–3109. https://doi.org/10.1002/cctc.201402612.

    Article  CAS  Google Scholar 

  25. Miki, Y., & Asano, Y. (2014). Biosynthetic pathway for the cyanide-free production of phenylacetonitrile in Escherichia coli by utilizing plant cytochrome P450 79A2 and bacterial aldoxime dehydratase. Applied and Environment Microbiology, 80(21), 6828–6836. https://doi.org/10.1128/AEM.01623-14.

    Article  CAS  Google Scholar 

  26. Pace, H. C., & Brenner, C. (2001). The nitrilase superfamily: classification, structure and function. Genome Biology, 2, 1–9.

    Article  Google Scholar 

  27. O’Reilly, C., & Turner, P. D. (2003). The nitrilase family of CN hydrolysing enzyme—a comparative study. Journal of Applied Microbiology, 95(6), 1161–1174. https://doi.org/10.1046/j.1365-2672.2003.02123.x.

    Article  CAS  PubMed  Google Scholar 

  28. Thuku, R. N., Brady, D., Benedik, M. J., & Sewell, B. T. (2009). Microbial nitrilases: versatile, spiral forming, industrial enzymes. Journal of Applied Microbiology, 106(3), 703–727. https://doi.org/10.1111/j.1365-2672.2008.03941.x.

    Article  CAS  PubMed  Google Scholar 

  29. Gong, J. S., Shi, J. S., Lu, Z. M., Zhou, Z. M., & Xu, Z. H. (2015). Nitrile converting enzymes as a tool to improve biocatalysis in organic synthesis: recent insight and promises. Critical Reviews in Biotechnology, 23, 1–13.

    Google Scholar 

  30. Martınkova, L., Rucka, L., Nesvera, J., & Patek, M. (2017). Recent advances and challenges in the heterologous production of microbial nitrilases for biocatalytic applications. World Journal of Microbiology and Biotechnology, 33(1), 8. https://doi.org/10.1007/s11274-016-2173-6.

    Article  CAS  PubMed  Google Scholar 

  31. Yamada, H., & Kobayashi, M. (1996). Nitrile hydratase and its application to industrial production of acrylamide. Bioscience Biotechnology and Biochemistry, 60(9), 1391–1400. https://doi.org/10.1271/bbb.60.1391.

    Article  CAS  Google Scholar 

  32. Prasad, S., & Bhalla, T. C. (2010). Nitrile hydratases (NHases): at the interface of academia and industry. Biotechnology Advances, 28(6), 725–741. https://doi.org/10.1016/j.biotechadv.2010.05.020.

    Article  CAS  PubMed  Google Scholar 

  33. Mahadevan, S. (1973). Role of oximes in nitrogen metabolism in plants. Annual Review of Plant Physiology, 24(1), 69–88. https://doi.org/10.1146/annurev.pp.24.060173.000441.

    Article  CAS  Google Scholar 

  34. Kato, Y., & Asano, Y. (2006). Molecular and enzymatic analysis of the “aldoxime–nitrile pathway” in the glutaronitrile degrader Pseudomonas sp. K-9. Applied Microbiology and Biotechnology, 70(1), 92–101. https://doi.org/10.1007/s00253-005-0044-4.

    Article  CAS  PubMed  Google Scholar 

  35. Hashimoto, Y., Hosaka, H., Oinuma, K., Goda, M., Higashibata, H., & Kobayashi, M. (2005). Nitrile pathway involving acyl-CoA synthetase. Journal of Biological Chemistry, 280, s8660–s8667.

    Article  Google Scholar 

  36. Xie, S. X., Kato, Y., Komeda, H., Yoshida, S., & Asano, Y. (2003). A gene cluster responsible for alkylaldoxime metabolism coexisting with nitrile hydratase and amidase in Rhodococcus globerulus A-4. Biochemistry, 42(41), 12056–12066. https://doi.org/10.1021/bi035092u.

    Article  CAS  PubMed  Google Scholar 

  37. Nomura, J., Hashimoto, H., Ohtac, T., Hashimotoa, Y., Wadaa, K., Naruta, Y., Oinumaa, K., & Kobayashi, M. (2012). Crystal structure of aldoxime dehydratase and its catalytic mechanism involved in carbon-nitrogen triple-bond synthesis. PNAS, 110, 2810–2815.

    Article  Google Scholar 

  38. Mateoa, C., Chmuraa, A., Rustlerb, S., Rantwijka, F., Stolzb, A., & Sheldona, R. A. (2006). Synthesis of enantiomerically pure (S)-mandelic acid using an oxynitrilase–nitrilase bienzymatic cascade: a nitrilase surprisingly shows nitrile hydratase activity. Tetrahedron: Asymmetry, 17(3), 320–323. https://doi.org/10.1016/j.tetasy.2006.01.020.

    Article  CAS  Google Scholar 

  39. Ueatrongchit, T., Ohmiya, T., Kittikun, H., & Asano, Y. (2010). Hydroxynitrile lyase from Passiflora edulis : purification, characteristics and application in asymmetric synthesis of (R)-mandelonitrile. Enzyme and Microbial Technology, 46(6), 456–465. https://doi.org/10.1016/j.enzmictec.2010.02.008.

    Article  CAS  PubMed  Google Scholar 

  40. Asif, M., & Bhalla, T. C. (2016). Hydroxynitrile lyase of wild apricot (Prunus armeniaca L.): purification, characterization and application in synthesis of enantiopure mandelonitrile. Catalysis Letters, 46, 1118–1127.

    Article  Google Scholar 

  41. Fuhshuku, K., & Asano, Y. (2011). Synthesis of (R)-β-nitro alcohols catalyzed by R-selective hydroxynitrile lyase from Arabidopsis thaliana in the aqueous–organic biphasic system. Journal of Biotechnology, 153(3-4), 153–159. https://doi.org/10.1016/j.jbiotec.2011.03.011.

    Article  CAS  PubMed  Google Scholar 

  42. Yamaguchi, T., Noge, K., & Asano, Y. (2016). Cytochrome P450 CYP71AT96 catalyses the final step of herbivore-induced phenylacetonitrile biosynthesis in the giant knotweed, Fallopia sachalinensis. Plant Molecular Biology, 91(3), 229–239. https://doi.org/10.1007/s11103-016-0459-6.

    Article  CAS  PubMed  Google Scholar 

  43. Zagrobelny, M., & Moller, L. (2011). Cynogenic glycosides in chemical warfare between plants and insects: the burnet moth-birdsfoot trefoil model system. Phytochemistry, 72(13), 1585–1592. https://doi.org/10.1016/j.phytochem.2011.02.023.

    Article  CAS  PubMed  Google Scholar 

  44. Zagrobelny, M., Bak, S., & Moller, B. L. (2008). Cyanogenesis in plants and arthropods. Journal of Phytochemistry, 69(7), 1457–1468. https://doi.org/10.1016/j.phytochem.2008.02.019.

    Article  CAS  PubMed  Google Scholar 

  45. Hussain, Z., Wiedner, R., Steiner, K., Hajek, T., Avi, M., Hecher, B., & Sessitsch, A. (2012). Characterization of two bacterial hydroxynitrile lyases with high similarity to cupin superfamily proteins. Applied and Environment Microbiology, 78(6), 2053–2055. https://doi.org/10.1128/AEM.06899-11.

    Article  CAS  Google Scholar 

  46. Wiedner, R., Gruber-khadjawi, M., Schwab, H., & Steiner, K. (2014). Discovery of a novel (R)-selective bacterial hydroxynitrile lyase from Acidobacterium capsulatum. Computational and Structural Biotechnology Journal, 10(16), 58–62. https://doi.org/10.1016/j.csbj.2014.07.002.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bracco, P., Busch, H., von Langermann, J., & Hanefeld, U. (2016). Enantioselective synthesis of cyanohydrins catalysed by hydroxynitrile lyases—a review. Organic & Biomolecular Chemistry, 14(27), 6375–6389. https://doi.org/10.1039/C6OB00934D.

    Article  CAS  Google Scholar 

  48. Dadashipour, M., Ishida, Y., Yamamoto, K., & Asano, Y. (2015). Discovery and molecular and biocatalytic properties of hydroxynitrile lyase from an invasive millipede, Chamberlinius hualienensis. PNAS, 112(34), 10605–10610. https://doi.org/10.1073/pnas.1508311112.

    Article  CAS  PubMed  Google Scholar 

  49. Prasad, S., Misra, A., Jangir, V. P., Awasthi, A., Raj, J., & Bhalla, T. C. (2007). A propionitrile-induced nitrilase of Rhodococcus sp. NDB 1165 and its application in nicotinic acid synthesis. World Journal of Microbiology and Biotechnology, 23(3), 345–353. https://doi.org/10.1007/s11274-006-9230-5.

    Article  CAS  Google Scholar 

  50. Sharma, N. N., Sharma, M., Kumar, H., & Bhalla, T. C. (2006). Nocardia globerula NHB-2: bench scale production of nicotinic acid. Process Biochemistry, 41(9), 2078–2081. https://doi.org/10.1016/j.procbio.2006.04.007.

    Article  CAS  Google Scholar 

  51. Sharma, N. N., Monica, S., & Bhalla, T. C. (2011). An improved nitrilase-mediated bioprocess for synthesis of nicotinic acid from 3-cyanopyridine with hyperinduced Nocardia globerula NHB-2. Journal of Industrial Microbiology, 38(9), 1235–1243. https://doi.org/10.1007/s10295-010-0902-7.

    Article  CAS  Google Scholar 

  52. Sharma, N. N., Sharma, M., & Bhalla, T. C. (2012). Nocardia globerula NHB-2 nitrilase catalyzed biotransformation of 4-cyanopyridine to isonicotinic acid. AMB Express, 2(1), 25. https://doi.org/10.1186/2191-0855-2-25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhu, X. Y., Gong, J. S., Li, H., Lu, Z. M., Shi, J. S., & Xu, Z. H. (2014). Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida. Chemical Papers, 68, 739–744.

    CAS  Google Scholar 

  54. Zhang, Z. J., Xu, J. H., He, Y. C., Ouyang, L. M., Liu, Y. Y., & Imanaka, T. (2010). Efficient production of (R)-(−)-mandelic acid with highly substrate/product tolerant and enatioselective nitrilase from recombinant Alcaligenes sp. Process Biochemistry, 45(6), 887–891. https://doi.org/10.1016/j.procbio.2010.02.011.

    Article  CAS  Google Scholar 

  55. Xue, Y., Xu, M., Chen, H., Liu, Z., Wang, Y., & Zheng, Y. (2013). A novel integrated bioprocess for efficient production of (R)-(−)-mandelic acid with immobilized Alcaligenes faecalis ZJUTB10. Organic Process & Research Development, 17(2), 213–220. https://doi.org/10.1021/op3001993.

    Article  CAS  Google Scholar 

  56. Ni, K., Wang, H., Zhao, L., Zhang, M., Zhang, S., Ren, Y., & Wei, D. (2013). Efficient production of (R)-(−)-mandelic acid in biphasic system by immobilized recombinant E. coli. Journal of Biotechnology, 167(4), 433–440. https://doi.org/10.1016/j.jbiotec.2013.07.024.

    Article  CAS  PubMed  Google Scholar 

  57. Bhatia, S. K., Mehta, P. K., Bhatia, R. K., & Bhalla, T. C. (2014). Optimization of arylacetonitrilase production from Alcaligenes sp. MTCC 10675 and its application in mandelic acid synthesis. Applied Microbiology and Biotechnology, 98(1), 83–94. https://doi.org/10.1007/s00253-013-5288-9.

    Article  CAS  PubMed  Google Scholar 

  58. He, Y. C., Xu, J. H., Su, J. H., & Zhou, L. (2009). Bioproduction of glycolic acid from glycolonitrile with a new bacterial isolate of Alcaligenes sp. ECU0401. Applied Biochemistry and Biotechnology, 160, 1428–1440.

    Article  Google Scholar 

  59. Wu, S., Fogiel, A. J., Petrillo, K. L., Jackson, R. E., Parker, K. N., DiCosimo, R., Ben-Bassat, A., O’Keefe, D. P., & Payne, M. S. (2008). Protein engineering of nitrilase for chemoenzymatic production of glycolic acid. Biotechnology and Bioengineering, 99(3), 717–720. https://doi.org/10.1002/bit.21643.

    Article  CAS  PubMed  Google Scholar 

  60. Raj, J., Singh, N., Prasad, S., Seth, A., & Bhalla, T. C. (2007a). Bioconversion of benzonitrile to benzoic acid using free and agar entrapped cells of Nocardia globerula NHB-2. Acta Microbiologica Imunologica Hungerica, 54(1), 79–88. https://doi.org/10.1556/AMicr.54.2007.1.8.

    Article  CAS  Google Scholar 

  61. Kumar, V., Kumar, V., Thakur, N., & Bhalla, T. C. (2015). Bench scale synthesis of p-hydroxybenzoic acid using whole cells nitrilase of Gordonia terrae mutant E9. Bioprocess and Biosystems Engineering, 38(7), 1267–1279. https://doi.org/10.1007/s00449-015-1367-x.

    Article  CAS  PubMed  Google Scholar 

  62. Kumar, V., & Bhalla, T. C. (2013). Transformation of p-hydroxybenzonitrile to p-hydroxybenzoic acid using nitrilase activity of Gordonia terrae. Biocatalysis and Biotransformation, 31(1), 42–48. https://doi.org/10.3109/10242422.2012.757761.

    Article  CAS  Google Scholar 

  63. Bergeron, S., Chaplin, D., Edwards, J. H., Ellis, B. S. W., Hill, C. L., Holt-Tiffin, K., et al. (2006). Nitrilase-catalysed desymmetrisation of 3-hydroxyglutaronitrile: preparation of a statin side-chain intermediate. Organic Process & Research Development, 10(3), 661–665. https://doi.org/10.1021/op050257n.

    Article  CAS  Google Scholar 

  64. Fan, H., Chen, L., Sun, H., Wang, H., Ren, Y., & Wei, D. (2017). A novel nitrilase from Ralstonia eutropha H16 and its application to nicotinic acid production. Bioprocess and Biosystems Engineering, 40(8), 1271–1281. https://doi.org/10.1007/s00449-017-1787-x.

    Article  CAS  PubMed  Google Scholar 

  65. Mathew, C. D., Nagasawa, T., Kobayashi, M., & Yamada, H. (1988). Nitrilase-catalyzed production of nicotinic acid from 3-cyanopyridine in Rhodococcus rhodochrous J1. Applied and Environment Microbiology, 54, 1030–1032.

    CAS  Google Scholar 

  66. Zhang, C. S., Zhang, Z. J., Li, C. X., Yu, H. L., Zheng, G. W., & Xu, J. H. (2012). Efficient production of (R)-o-chloromandelic acid by deracemization of o-chloromandelonitrile with a new nitrilase mined from Labrenzia aggregata. Applied Microbiology and Biotechnology, 95(1), 91–99. https://doi.org/10.1007/s00253-012-3993-4.

    Article  CAS  PubMed  Google Scholar 

  67. Wu, S., Fogiel, A. J., Petrillo, K. L., Hann, E. C., Mersinger, L. J., Dicosimo, R., et al. (2007). Protein engineering of Acidovorax facilis 72W nitrilase for bioprocess development. Biotechnology, 97, 689–693.

    CAS  Google Scholar 

  68. Zhang, Z. J., Xu, J. H., He, Y. C., Ouyang, L. M., & Liu, Y. Y. (2011). Cloning and biochemical properties of a highly thermostable and enantioselective nitrilase from Alcaligenes sp. ECU0401 and its potential for (R)-(2)-mandelic acid production. Bioprocess and Biosystems Engineering, 34(3), 315–322. https://doi.org/10.1007/s00449-010-0473-z.

    Article  CAS  PubMed  Google Scholar 

  69. Bhatia, S. K., Mehta, P. K., Bhatia, R. K., & Bhalla, T. C. (2011). An isobutyronitrile-induced bienzymatic system of Alcaligenes sp. MTCC 10674 and its application in the synthesis of α-hydroxyisobutyric acid. Bioprocess and Biosystems Engineering, 36, 613–625.

    Article  Google Scholar 

  70. Zabaznaya, E., Kozulin, S., & Voronin, S. (1998). Selection of strains transforming acrylonitrile and acrylamide into acrylic acid. Applied Biochemistry and Microbiology, 34, 341–345.

    Google Scholar 

  71. Nagasawa, T., Nakamura, T., & Yamada, H. (1990). Production of acrylic acid and methacrylic acid using Rhodococcus rhodochrous J1 nitrilase. Applied Microbiology and Biotechnology, 34, 322–324.

    CAS  Google Scholar 

  72. Banerjee, A., Kaul, P., & Banrjee, U. C. (2006). Enhancing the catalytic potential of nitrilase from Pseudomonas putida for stereoselective nitrile hydrolysis. Applied Microbiology and Biotechnology, 72(1), 77–87. https://doi.org/10.1007/s00253-005-0255-8.

    Article  CAS  PubMed  Google Scholar 

  73. Kaul, P., Stolz, A., & Banerjee, U. C. (2007). Cross-linked amorphous nitrilase aggregates for enantioselective nitrile hydrolysis. Advanced Synthesis & Catalysis, 349(13), 2167–2176. https://doi.org/10.1002/adsc.200700125.

    Article  CAS  Google Scholar 

  74. Almatawah, Q. A., & Cowan, D. A. (1999). Thermostable nitrilase catalysed production of nicotinic acid from 3-cyanopyridine. Enzyme and Microbial Technology, 25(8-9), 718–724. https://doi.org/10.1016/S0141-0229(99)00104-0.

    Article  CAS  Google Scholar 

  75. Pai, O., Banoth, L., Ghosh, S., Chisti, Y., & Chand, U. (2014). Biotransformation of 3-cyanopyridine to nicotinic acid by free and immobilized cells of recombinant Escherichia coli. Process Biochemistry, 49(4), 655–659. https://doi.org/10.1016/j.procbio.2014.01.023.

    Article  CAS  Google Scholar 

  76. Wu, Y., Gong, J. S., Lu, Z. M., Li, H., Zhu, X. Y., Li, H., Shi, J. S., et al. (2013). Isolation and characterization of Gibberella intermedia CA3-1, a novel and versatile nitrilase-producing fungus. Journal of Basic Microbiology, 53, 1–8.

    Article  Google Scholar 

  77. Shen, M., Zheng, Y. G., & Shen, Y. C. (2009). Isolation and characterization of a novel Arthrobacter nitroguajacolicus ZJUTB06-99, capable of converting acrylonitrile to acrylic acid. Process Biochemistry, 44(7), 781–785. https://doi.org/10.1016/j.procbio.2009.03.006.

    Article  CAS  Google Scholar 

  78. Chen, J., Zheng, Y. G., & Shen, Y. C. (2008). Biotransformation of p-methoxyphenylacetonitrile into p-methoxyphenylacetic acid by resting cells of Bacillus subtilis. Biotechnology and Applied Biochemistry, 50(3), 147–153. https://doi.org/10.1042/BA20070106.

    Article  CAS  PubMed  Google Scholar 

  79. Jin, L. Q., Li, Z. T., Liu, Z. Q., Zheng, Y. G., & Shen, Y. C. (2014). Efficient production of methionine from 2-amino-4-methylthiobutanenitrile by recombinant Escherichia coli harboring nitrilase. Journal of Industrial Microbiology and Biotechnology, 41(10), 1479–1486. https://doi.org/10.1007/s10295-014-1490-8.

    Article  CAS  PubMed  Google Scholar 

  80. Jin, L. Q., Guo, D. J., Li, Z. T., Liu, Z. Q., & Zheng, Y. G. (2016). Immobilization of nitrilase on bioinspired silica for efficient synthesis of 2-hydroxy-4-(methylthio) butanoic acid from 2-hydroxy-4-(methylthio) butanenitrile. Journal of Industrial Microbiology and Biotechnology, 43(5), 585–593. https://doi.org/10.1007/s10295-016-1747-5.

    Article  CAS  PubMed  Google Scholar 

  81. Wang, H., Sun, H., Gao, W., & Wei, D. (2014). Efficient production of (R)-o-Chloromandelic acid by recombinant Escherichia coli cells harboring nitrilase from Burkholderia cenocepacia J2315. Organic Process & Research Development, 18(6), 767–773. https://doi.org/10.1021/op400174a.

    Article  CAS  Google Scholar 

  82. Liu, Z., Zhang, X., Xue, Y., Xu, M., & Zheng, Y. (2014). Improvement of Alcaligenes faecalis nitrilase by gene site saturation mutagenesis and its application in stereospecific biosynthesis of (R)-(−)-mandelic acid. Journal of Agriculture and Food Chemistry, 62, 4685−4694.

    Google Scholar 

  83. Martinkova, L., & Kren, V. (2002). Nitrile and amide-converting microbial enzymes: stereo-, regio- and chemoselectivity. Biocatalysis and Biotransformation, 20, 79–93.

    Article  Google Scholar 

  84. Kim, B., & Hyun, H. (2002). Production of acrylamide using immobilized cells of Rhodococcus rhodochrous M33. Biotechnology and Bioprocess Engineering, 7(4), 194–200. https://doi.org/10.1007/BF02932969.

    Article  CAS  Google Scholar 

  85. Raj, J., Nand, N., & Shreenath, S. (2008). Acrylamide synthesis using agar entrapped cells of Rhodococcus rhodochrous PA-34 in a partitioned fed batch reactor. Journal of Industrial Microbiology, 35(1), 35–40. https://doi.org/10.1007/s10295-007-0263-z.

    Article  CAS  Google Scholar 

  86. Pratush, A., Seth, A., & Bhalla, T. C. (2012). Optimization of process parameters for conversion of 3-cyanopyridine to nicotinamide using resting cells of mutant 4D strain of Rhodococcus rhodochrous PA-34. International Journal of Bioautomation, 15, 151–158.

    Google Scholar 

  87. Wang, Z., Liu, Z., Cui, W., & Zhou, Z. (2017). Establishment of bioprocess for synthesis of nicotinamide by recombinant Escherichia coli expressing high-molecular-mass nitrile hydratase. Applied Biochemistry and Biotechnology, 182(4), 1458–1466. https://doi.org/10.1007/s12010-017-2410-y.

    Article  CAS  PubMed  Google Scholar 

  88. Mauger, J., Nagasawa, T., & Yamada, H. (1988). Nitrile hydratase catalyzed production of isonicotinamide, picolinamide and pyrazinamide from 4-cyanopyridine, 2-cyano- pyridine, and 3-cyanopyrazine in Rhodococcus rhodochrous J1. Journal of Biotechnology, 8(1), 87–96. https://doi.org/10.1016/0168-1656(88)90071-5.

    Article  CAS  Google Scholar 

  89. Raj, J., Seth, A., Prasad, S., & Bhalla, T. C. (2007b). Bioconversion of butyronitrile to butyramide using whole cells of Rhodococcus rhodochrous PA-34. Applied Microbiology and Biotechnology, 74(3), 535–539. https://doi.org/10.1007/s00253-006-0693-y.

    Article  CAS  PubMed  Google Scholar 

  90. Hann, E. C., Eisenberg, A., Fager, S. K., Perkins, N. K., Gallagher, F. G., Cooper, S. M., et al. (1999). 5-Cyanovaleramide production using immobilized Pseudomonas chlororaphis B23. Bioorganic and Medical Chemistry, 7(10), 2239–2245. https://doi.org/10.1016/S0968-0896(99)00157-1.

    Article  CAS  Google Scholar 

  91. Tucker, J.L., Xu, L., Yu, W., Scott, R., Zhao, L., & Ran, N. (2009). Chemoenzymatic processes for preparation of levetiracetam. Patent, WO 2009009117 A3.

  92. Yasukawa, K., & Asano, Y. (2012). Enzymatic synthesis of chiral phenylalanine derivatives by a dynamic kinetic resolution of corresponding amide and nitrile substrates with a multi-enzyme system. Advanced Synthesis & Catalysis, 354(17), 3327–3332. https://doi.org/10.1002/adsc.201100923.

    Article  CAS  Google Scholar 

  93. Yasukawa, K., Hasemi, R., & Asano, Y. (2011). Dynamic kinetic resolution of α-aminonitriles to form α-chiral amino acids. Advanced Synthesis & Catalysis, 353(13), 2328–2332. https://doi.org/10.1002/adsc.201100360.

    Article  CAS  Google Scholar 

  94. Tang, R., Shen, Y., Wang, M., & Zhai, Y. (2017). Highly chemoselective and efficient production of 2, 6-difluorobenzamide using Rhodococcus ruber CGMCC3090 resting cells. Journal of Bioscience and Bioengineering, 124(6), 641–646. https://doi.org/10.1016/j.jbiosc.2017.07.001.

    Article  CAS  PubMed  Google Scholar 

  95. Maksimova, Y. G., Gorbunova, A. N., & Demakov, V. A. (2017). Stereoselective biotransformation of phenylglycine nitrile by heterogeneous biocatalyst based on immobilized bacterial cells and enzyme preparation. Doklady Biochemistry and Biophysics, 474(1), 183–185. https://doi.org/10.1134/S1607672917030139.

    Article  CAS  PubMed  Google Scholar 

  96. Vejvoda, V., Kaplan, O., Kubac, D., Kren, V., & Martinkova, L. (2006). Immobilization of fungal nitrilase and bacterial amidase—two enzymes working in accord. Biocatalysis and Biotransformation, 24(6), 414–418. https://doi.org/10.1080/10242420601033910.

    Article  CAS  Google Scholar 

  97. Bhatia, R. K., Bhatia, S. K., Mehta, P. K., & Bhalla, T. C. (2014). Biotransformation of nicotinamide to nicotinyl hydroxamic acid at bench scale by amidase acyl transfer activity of Pseudomonas putida BR-1. Journal of Molecular Catalysis. B Enzymatic, 108, 89–95. https://doi.org/10.1016/j.molcatb.2014.07.001.

    Article  CAS  Google Scholar 

  98. Pandey, D., Singh, R., & Chand, D. (2011). An improved bioprocess for synthesis of acetohydroxamic acid using DTT (dithiothreitol) treated resting cells of Bacillus sp. APB-6. Bioresource Technology, 102(11), 6579–6586. https://doi.org/10.1016/j.biortech.2011.03.071.

    Article  CAS  PubMed  Google Scholar 

  99. Agarwal, S., Gupta, M., & Choudhury, B. (2013). Bioprocess development for nicotinic acid hydroxamate synthesis by acyltransferase activity of Bacillus smithii strain IITR6b2. Journal of Industrial Microbiology and Biotechnology, 40(9), 937–946. https://doi.org/10.1007/s10295-013-1299-x.

    Article  CAS  PubMed  Google Scholar 

  100. Sharma, M., Sharma, N. N., & Bhalla, T. C. (2011). Biotransformation of acetamide to acetohydroxamic acid at bench scale using acyl transferase activity of amidase of Geobacillus pallidus BTP-5x MTCC 9225. Journal of Industrial Microbiology and Biotechnology, 52, 76–82.

    Google Scholar 

  101. Vesela, A. B., Franc, M., Pelantova, H., Kubac, D., Vejvoda, V., Sulc, M., Bhalla, T. C., et al. (2010). Hydrolysis of benzonitrile herbicides by soil actinobacteria and metabolite toxicity. Biodegradation, 21(5), 761–770. https://doi.org/10.1007/s10532-010-9341-4.

    Article  CAS  PubMed  Google Scholar 

  102. Yamamoto, K., Ueno, Y., Otsubo, K., Kawakami, K., & Komatsu, K. I. (1990). Production of S-(+)-ibuprofen from a nitrile compound by Acinetobacter sp strain-Ak226. Applied and Environmental Microbiology, 56(10), 3125–3129.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Effenberger, F., & Böhme, J. (1994). Enzyme-catalysed enantioselective hydrolysis of racemic naproxen nitrile. Bioorganic and Medical Chemistry, 2(7), 715–721. https://doi.org/10.1016/0968-0896(94)85022-4.

    Article  CAS  Google Scholar 

  104. Ritzen, B., Hoekman, S., Verdasco, E. D., van Delft, F. L., & brutes, P. J. T. F. (2010). Enantioselective chemoenzymatic synthesis of cis and trans-2,5-disubstituted morpholines. Journal of Organic Chemistry, 75(10), 3461–3464. https://doi.org/10.1021/jo1003295.

    Article  CAS  PubMed  Google Scholar 

  105. Wilding, B., Veselá, A. B., Perry, J. J., Black, G. W., Zhang, M., Martínková, L., & Klempier, N. (2015). An investigation of nitrile transforming enzymes in the chemo-enzymatic synthesis of the taxol sidechain. Organic & Biomolecular Chemistry, 13(28), 7803–7812.

    Article  CAS  Google Scholar 

  106. Yao, P., Li, J., Yuan, J., Han, C., Liu, X., Feng, J., Wu, Q., & Zhu, D. (2015). Enzymatic synthesis of a key intermediate for rosuvastatin by nitrilase-catalyzed hydrolysis of ethyl (R)-4-cyano-3-hydroxybutyate at high substrate concentration. ChemCatChem, 7(2), 271–275. https://doi.org/10.1002/cctc.201402877.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are highly grateful to University Grants Commission (UGC), New Delhi, India, for providing financial assistance in the form of Senior Research Fellowship to Dr. Vijay Kumar. The computational facility availed at Sub-Distributed Information Centre (SDIC), Himachal Pradesh University, Shimla, is also duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tek Chand Bhalla.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhalla, T.C., Kumar, V., Kumar, V. et al. Nitrile Metabolizing Enzymes in Biocatalysis and Biotransformation. Appl Biochem Biotechnol 185, 925–946 (2018). https://doi.org/10.1007/s12010-018-2705-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2705-7

Keywords

Navigation