Skip to main content
Log in

Characterization of a Whole-Cell Biotransformation Using a Constitutive Lysine Decarboxylase from Escherichia coli for the High-Level Production of Cadaverine from Industrial Grade l-Lysine

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cadaverine is used for the synthesis of the novel bio-polyamides 54, 56, and 510. Here, we examine the feasibility of using a lysine decarboxylase (LdcC) from Escherichia coli for high-level production of cadaverine. After sequential optimization of whole-cell biotransformation conditions, recombinant E. coli-overexpressing LdcC (EcLdcC) could produce 1.0 M cadaverine from 1.2 M crude l-lysine solution after 9 h. EcLdcC retained a higher cadaverine yield after being reused 10 times at acidic and alkaline pH values than that of a recombinant E. coli strain overexpressing an inducible lysine decarboxylase (CadA), a conventional cadaverine producer (90 vs. 51% at pH 6 and 55 vs. 15% at pH 8). This study reveals that EcLdcC is a promising whole-cell biocatalyst for the bio-based production of cadaverine from industrial grade l-lysine in comparison to EcCadA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cho, C., Choi, S. Y., Luo, Z. W., & Lee, S. Y. (2015). Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Biotechnology Advances., 33(7), 1455–1466. https://doi.org/10.1016/j.biotechadv.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  2. Oh, Y. H., Eom, I. Y., Joo, J. C., Yu, J. H., Song, B. K., Lee, S. H., Hong, S. H., & Park, S. J. (2015). Recent advances in development of biomass pretreatment technologies used in biorefinery for the production of bio-based fuels, chemicals and polymers. Korean Journal of Chemical Engineering., 32(10), 1945–1959. https://doi.org/10.1007/s11814-015-0191-y

    Article  CAS  Google Scholar 

  3. Jang, Y.-S., Kim, B., Shin, J. H., Choi, Y. J., Choi, S., Song, C. W., Lee, J., Park, H. G., & Lee, S. Y. (2012). Bio-based production of C2–C6 platform chemicals. Biotechnology and Bioengineering, 109(10), 2437–2459. https://doi.org/10.1002/bit.24599

    Article  CAS  PubMed  Google Scholar 

  4. Koutinas, A. A., Vlysidis, A., Pleissner, D., Kopsahelis, N., Lopez Garcia, I., Kookos, I. K., Papanikolaou, S., Kwan, T. H., & Lin, C. S. K. (2014). Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chemical Society Reviews., 43(8), 2587–2627. https://doi.org/10.1039/c3cs60293a

    Article  CAS  PubMed  Google Scholar 

  5. Qian, Z.-G., Xia, X.-X., & Lee, S. Y. (2009). Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine. Biotechnology and Bioengineering, 104(4), 651–662. https://doi.org/10.1002/bit.22502

  6. Kind, S., Neubauer, S., Becker, J., Yamamoto, M., Völkert, M., Abendroth, G., Zelder, O., & Wittmann, C. (2014). From zero to hero—production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metabolic Engineering., 25, 113–123. https://doi.org/10.1016/j.ymben.2014.05.007

    Article  CAS  PubMed  Google Scholar 

  7. Ahn, J. H., Jang, Y.-S., & Lee, S. Y. (2016). Production of succinic acid by metabolically engineered microorganisms. Current Opinion in Biotechnology., 42, 54–66. https://doi.org/10.1016/j.copbio.2016.02.034

    Article  CAS  PubMed  Google Scholar 

  8. Shin, J. H., Park, S. H., Oh, Y. H., Choi, J. W., Lee, M. H., Cho, J. S., Jeong, K. J., Joo, J. C., Yu, J., Park, S. J., & Lee, S. Y. (2016). Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid. Microbial Cell Factories., 15(1), 174. https://doi.org/10.1186/s12934-016-0566-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Joo, J. C., Khusnutdinova, A. N., Flick, R., Kim, T., Bornscheuer, U. T., Yakunin, A. F., & Mahadevan, R. (2017). Alkene hydrogenation activity of enoate reductases for an environmentally benign biosynthesis of adipic acid. Chemical Science, 8(2), 1406–1413. https://doi.org/10.1039/c6sc02842j

    Article  CAS  PubMed  Google Scholar 

  10. Choi, J. W., Yim, S. S., Lee, S. H., Kang, T. J., Park, S. J., & Jeong, K. J. (2015). Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range. Microbial Cell Factories, 14, 1. https://doi.org/10.1186/s12934-015-0205-9

    Article  CAS  Google Scholar 

  11. Park, S. J., Kim, E. Y., Noh, W., Park, H. M., Oh, Y. H., Lee, S. H., Song, B. K., Jegal, J., & Lee, S. Y. (2013). Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Metabolic Engineering, 16, 42–47. https://doi.org/10.1016/j.ymben.2012.11.011

    Article  CAS  PubMed  Google Scholar 

  12. Turk, S. C. H. J., Kloosterman, W. P., Ninaber, D. K., Kolen, K. P. A. M., Knutova, J., Suir, E., Schürmann, M., Raemakers-Franken, P. C., Müller, M., de Wildeman, S. M. A., Raamsdonk, L. M., van der Pol, R., Wu, L., Temudo, M. F., van der Hoeven, R. A. M., Akeroyd, M., van der Stoel, R. E., Noorman, H. J., Bovenberg, R. A. L., & Trefzer, A. C. (2016). Metabolic engineering toward sustainable production of nylon-6. ACS Synthetic Biology., 5(1), 65–73. https://doi.org/10.1021/acssynbio.5b00129

    Article  CAS  PubMed  Google Scholar 

  13. Mitsuhashi, S. (2014). Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides. Current Opinion in Biotechnology., 26, 38–44. https://doi.org/10.1016/j.copbio.2013.08.020

    Article  CAS  PubMed  Google Scholar 

  14. Wittmann, C., & Becker, J. (2007). The l-lysine story: from metabolic pathways to industrial production. In V. F. Wendisch (Ed.), Amino acid biosynthesis—pathways, regulation and metabolic engineering (pp. 39–70). Heidelberg: Springer Berlin. https://doi.org/10.1007/7171_2006_089

    Chapter  Google Scholar 

  15. Adkins, J., Pugh, S., McKenna, R., & Nielsen, D. (2012). Engineering microbial chemical factories to produce renewable “biomonomers”. Frontiers in Microbiology, 3:313. https://doi.org/10.3389/fmicb.2012.00313

  16. Jeong, S., Yeon, Y. J., Choi, E.-G., Byun, S., Cho, D., Kim, I. K., & Kim, Y. H. (2016). Alkaliphilic lysine decarboxylases for effective synthesis of cadaverine from L-lysine. Korean Journal of Chemical Engineering., 33(5), 1530–1533. https://doi.org/10.1007/s11814-016-0079-5

    Article  CAS  Google Scholar 

  17. Buschke, N., Becker, J., Schäfer, R., Kiefer, P., Biedendieck, R., & Wittmann, C. (2013). Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane. Biotechnology Journal, 8(5), 557–570. https://doi.org/10.1002/biot.201200367

    Article  CAS  PubMed  Google Scholar 

  18. Kim, H. J., Kim, Y. H., Shin, J. H., Bhatia, S. K., Sathiyanarayanan, G., Seo, H. M., Choi, K. Y., Yang, Y. H., & Park, K. (2015). Optimization of direct lysine decarboxylase biotransformation for cadaverine production with whole-cell biocatalysts at high lysine concentration. Journal of Microbiology and Biotechnology, 25(7), 1108–1113. https://doi.org/10.4014/jmb.1412.12052

    Article  CAS  PubMed  Google Scholar 

  19. Ma, W., Cao, W., Zhang, H., Chen, K., Li, Y., & Ouyang, P. (2015). Enhanced cadaverine production from l-lysine using recombinant Escherichia coli co-overexpressing CadA and CadB. Biotechnology Letters, 37(4), 799–806. https://doi.org/10.1007/s10529-014-1753-5

    Article  CAS  PubMed  Google Scholar 

  20. Oh, Y. H., Kang, K. H., Kwon, M. J., Choi, J. W., Joo, J. C., Lee, S. H., Yang, Y. H., Song, B. K., Kim, I. K., Yoon, K. H., Park, K., & Park, S. J. (2015). Development of engineered Escherichia coli whole-cell biocatalysts for high-level conversion of l-lysine into cadaverine. Journal of Industrial Microbiology & Biotechnology, 42(11), 1481–1491. https://doi.org/10.1007/s10295-015-1678-6

    Article  CAS  Google Scholar 

  21. Kanjee, U., Gutsche, I., Alexopoulos, E., Zhao, B., Bakkouri, M. E., Thibault, G., Liu, K., Ramachandran, S., Snider, J., Pai, E. F., & Houry, W. A. (2011). Linkage between the bacterial acid stress and stringent responses: the structure of the inducible lysine decarboxylase. The EMBO Journal, 30(5), 931–944. https://doi.org/10.1038/emboj.2011.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yamamoto, Y., Miwa, Y., Miyoshi, K., Furuyama, J. I., & Ohmori, H. (1997). The Escherichia coli ldcC gene encodes another lysine decarboxylase, probably a constitutive enzyme. Genes & Genetic Systems, 72(3), 167–172. https://doi.org/10.1266/ggs.72.167

    Article  CAS  Google Scholar 

  23. Ma, W., Cao, W., Zhang, B., Chen, K., Liu, Q., Li, Y., & Ouyang, P. (2015). Engineering a pyridoxal 5′-phosphate supply for cadaverine production by using Escherichia coli whole-cell biocatalysis. Scientific Reports, 5, 15630. https://doi.org/10.1038/srep15630

  24. Ikeda, N., Miyamoto, M., Adachi, N., Nakano, M., Tanaka, T., & Kondo, A. (2013). Direct cadaverine production from cellobiose using β-glucosidase displaying Escherichia coli. AMB Express, 3(1), 67. https://doi.org/10.1186/2191-0855-3-67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lemonnier, M., & Lane, D. (1998). Expression of the second lysine decarboxylase gene of Escherichia coli. Microbiology, 144(3), 751–760. https://doi.org/10.1099/00221287-144-3-751

    Article  CAS  PubMed  Google Scholar 

  26. Kind, S., Jeong, W. K., Schröder, H., Zelder, O., & Wittmann, C. (2010). Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Applied and Environmental Microbiology, 76(15), 5175–5180. https://doi.org/10.1128/AEM.00834-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Krithika, G., Arunachalam, J., Priyanka, H., & Indulekha, K. (2010). The two forms of lysine decarboxylase; kinetics and effect of expression in relation to acid tolerance response in E. coli. Journal of Experimental Sciences., 1, 10–21.

    Google Scholar 

  28. Alaiz, M., Navarro, J. L., Girón, J., & Vioque, E. (1992). Amino acid analysis by high-performance liquid chromatography after derivatization with diethyl ethoxymethylenemalonate. Journal of Chromatography A., 591(1-2), 181–186. https://doi.org/10.1016/0021-9673(92)80236-N

    Article  CAS  Google Scholar 

  29. Arnold, F. H., Wintrode, P. L., Miyazaki, K., & Gershenson, A. (2001). How enzymes adapt: lessons from directed evolution. Trends in Biochemical Sciences., 26(2), 100–106. https://doi.org/10.1016/S0968-0004(00)01755-2

    Article  CAS  PubMed  Google Scholar 

  30. Neshich, I. A., Kiyota, E., & Arruda, P. (2013). Genome-wide analysis of lysine catabolism in bacteria reveals new connections with osmotic stress resistance. The ISME Journal, 7(12), 2400–2410. https://doi.org/10.1038/ismej.2013.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Joo, J. C., Pack, S. P., Kim, Y. H., & Yoo, Y. J. (2011). Thermostabilization of Bacillus circulans xylanase: computational optimization of unstable residues based on thermal fluctuation analysis. Journal of Biotechnology, 151(1), 56–65. https://doi.org/10.1016/j.jbiotec.2010.10.002

    Article  CAS  PubMed  Google Scholar 

  32. Joo, J. C., Pohkrel, S., Pack, S. P., & Yoo, Y. J. (2010). Thermostabilization of Bacillus circulans xylanase via computational design of a flexible surface cavity. Journal of Biotechnology, 146(1-2), 31–39. https://doi.org/10.1016/j.jbiotec.2009.12.021

    Article  CAS  PubMed  Google Scholar 

  33. Jun, C., Joo, J. C., Lee, J. H., & Kim, Y. H. (2014). Thermostabilization of glutamate decarboxylase B from Escherichia coli by structure-guided design of its pH-responsive N-terminal interdomain. Journal of Biotechnology, 174, 22–28. https://doi.org/10.1016/j.jbiotec.2014.01.020

    Article  CAS  PubMed  Google Scholar 

  34. Kim, T., Joo, J. C., & Yoo, Y. J. (2012). Hydrophobic interaction network analysis for thermostabilization of a mesophilic xylanase. Journal of Biotechnology., 161(1), 49–59. https://doi.org/10.1016/j.jbiotec.2012.04.015

    Article  CAS  PubMed  Google Scholar 

  35. Jun, C., Jeon, B. W., Joo, J. C., Le, Q. A. T., Gu, S.-A., Byun, S., Cho, D. H., Kim, D., Sang, B.-I., & Kim, Y. H. (2013). Thermostabilization of Candida antarctica lipase B by double immobilization: adsorption on a macroporous polyacrylate carrier and R1 silaffin-mediated biosilicification. Process Biochemistry, 48(8), 1181–1187. https://doi.org/10.1016/j.procbio.2013.06.010

    Article  CAS  Google Scholar 

  36. Kang, T. J., Ho, N. A. T., & Pack, S. P. (2013). Buffer-free production of gamma-aminobutyric acid using an engineered glutamate decarboxylase from Escherichia coli. Enzyme and Microbial Technology., 53(3), 200–205. https://doi.org/10.1016/j.enzmictec.2013.04.006

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Industrial Strategic Technology Development Program (10047910, Production of bio-based cadaverine and polymerization of Bio-polyamide 510) funded by the Ministry of Trade, Industry, and Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyungmoon Park.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, J., Joo, J.C., Lee, E. et al. Characterization of a Whole-Cell Biotransformation Using a Constitutive Lysine Decarboxylase from Escherichia coli for the High-Level Production of Cadaverine from Industrial Grade l-Lysine. Appl Biochem Biotechnol 185, 909–924 (2018). https://doi.org/10.1007/s12010-018-2696-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2696-4

Keywords

Navigation