Skip to main content

Advertisement

Log in

A Novel Approach in Treatment of Tuberculosis by Targeting Drugs to Infected Macrophages Using Biodegradable Nanoparticles

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Mycobacterium tuberculosis, the causative agent of tuberculosis is now causing death of more than 10 million people. Because of the development of drug-resistant TB, drug delivery to the infected site through nanoparticle had been studied for long time. Nanoparticles indicate different sorts of association with the natural particles of the body. Nanoparticles can be used as controlled or specific drug delivery system. It can be through temporal controlled or can be distribution controlled. Glucose polymer-based nanoparticles might play an important role as drug delivery system in case of targeted drug delivery in the infected site of the body or in infected macrophages, as they are biodegradable so there should not be any side effects of these particles in the body and also they show very slow immune response. CD4, Beta 1, TGFb-1, IL-2, IL-13 SEC14L1, GUSB, BPI, and CCR7 are major biomarkers secreted after infection of this bacterium by the macrophages which can be used for targeted drug delivery in infected macrophages. As these markers can be used for delivery of drugs at destined position, they can be very beneficial in reducing toxicities of antituberculer drugs to the other uninfected sites and in operating only the infected macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TB:

Tuberculosis

Mtb :

Mycobacterium tuberculosis

INH:

Isoniazid

RIF:

Rifampicin

PZA:

Pyrazinamide

AMs:

Alveolar macrophages

MIC:

Minimal inhibitory concentration

IFN-γ:

Interferon gamma

IL-2:

Interleukin- 2

CD4:

Cluster of differentiation 4

TGFb-1:

Transforming growth factor beta 1

IL-2:

Interleukin

IL-13:

Interleukin

SEC14L1:

Sec14- like lipid binding 1

GUSB:

Glucuronidase beta

BPI:

Bactericidal/permeability-increasing protein

CCR7:

C-C chemokine receptor type 7

References

  1. Zenebe, Y., Anagaw, B., Tesfay, W., Debebe, T., & Gelaw, B. (2013). Smear positive extra pulmonary tuberculosis disease at University of Gondar Hospital, Northwest Ethiopia. BMC., 6, 1–10.

    Google Scholar 

  2. Meena, L. S., & Rajni. (2010). Survival mechanisms of pathogenic Mycobacterium tuberculosis H37Rv. The FEBS Journal, 277(11), 2416–2427. https://doi.org/10.1111/j.1742-4658.2010.07666.x

    Article  CAS  PubMed  Google Scholar 

  3. Nguyen, L., & Pieters, J. (2005). The Trojan horse: survival tactics of pathogenic Mycobacteria in macrophages. Trends in Cell Biology, 15(5), 269–276. https://doi.org/10.1016/j.tcb.2005.03.009

    Article  CAS  PubMed  Google Scholar 

  4. World Health Organization, Global Tuberculosis Report 2014 (WHO, 2014).

  5. World Health Organization, Global Tuberculosis Report 2016 (WHO, 2016).

  6. Chopra, P., Meena, L. S., & Singh, Y. (2003). New drug targets for Mycobacterium tuberculosis. Indian Journal Medical, 117, 1–9.

    CAS  Google Scholar 

  7. Collins, H. L., & Kaufmann, S. H. (2001). The many faces of host responses to tuberculosis. Immunol., 103(1), 1–9. https://doi.org/10.1046/j.1365-2567.2001.01236.x

    Article  CAS  Google Scholar 

  8. Hamidon, N. H., Suraiya, S., Sarmiento, M. E., Acosta, A., Norazmi, M. N., & Lim, T. S. (2017). Immune TB antibody phage display library as a tool to study B cell immunity in TB infections. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-017-2582-5

  9. Chen, K., & Kolls, J. K. (2013). T cell-mediated host immune defenses in the lung. Annual Review of Immunology, 31(1), 605–633. https://doi.org/10.1146/annurev-immunol-032712-100019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schlesinger, L. S. (1993). Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. Journal of Immunology, 150, 2920–2930.

    CAS  Google Scholar 

  11. Kang, P. B., Azad, A. K., Torrelles, J. B., Kaufman, T. M., & Beharka, A. (2005). The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. The Journal of Experimental Medicine, 202(7), 987–999. https://doi.org/10.1084/jem.20051239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cooper, A. M., & Mayer-Barber, K. D. (2011). A role of innate cytokines in mycobacterial infection. Mucosal Immunology, 4(3), 252–260. https://doi.org/10.1038/mi.2011.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Monu, & Meena, L. S. (2016). Roles of triolein and lipolytic protein in the pathogenesis and survival of Mycobacterium tuberculosis: a novel therapeutic approach. Applied Biochemistry and Biotechnology, 178(7), 1377–1389. https://doi.org/10.1007/s12010-015-1953-z

    Article  CAS  PubMed  Google Scholar 

  14. Chen, L., Guo, S., Wu, L., Fan, X., Ma, H., Wu, K., Wu, J., & Zhang. (2015). IL-17A autoantibody induced by recombinant Mycobacterium smegmatis expressing Ag85A-IL-17A fusion protein. Applied Biochemistry and Biotechnology, 176(7), 2018–2026. https://doi.org/10.1007/s12010-015-1697-9

    Article  CAS  PubMed  Google Scholar 

  15. Philips, J. A. (2008). Mycobacterial manipulation of vacuolar sorting. Cellular Microbiology, 10(12), 2408–2415. https://doi.org/10.1111/j.1462-5822.2008.01239.x

    Article  CAS  PubMed  Google Scholar 

  16. Rodrigues, M. L. (2008). Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryotic Cell, 7(1), 58–67. https://doi.org/10.1128/EC.00370-07

    Article  CAS  PubMed  Google Scholar 

  17. Clemens, D. L., & Horwitz, M. A. (1995). Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. The Journal of Experimental Medicine, 181(1), 257–270. https://doi.org/10.1084/jem.181.1.257

    Article  CAS  PubMed  Google Scholar 

  18. Kumari, P., & Meena, L. S. (2014). Factors affecting susceptibility to Mycobacterium tuberculosis: a close view of immunological defence mechanism. Applied Biochemistry and Biotechnology, 174(8), 2663–2673. https://doi.org/10.1007/s12010-014-1217-3

    Article  CAS  PubMed  Google Scholar 

  19. Small, P. L., Ramakrishnan, L., & Falkow, S. (1994). Remodeling schemes of intracellular pathogens. Sci., 263(5147), 637–639. https://doi.org/10.1126/science.8303269

    Article  CAS  Google Scholar 

  20. He, Q., Zhang, Z., Gao, F., Li, Y., & Shi, J. (2011). In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. Small, 7(2), 271–280. https://doi.org/10.1002/smll.201001459

    Article  CAS  PubMed  Google Scholar 

  21. Vanhest, R., Baars, H., Kik, S., van Gerven, P., Trompenaars, M. C., Kalisvaart, N., Keizer, S., Borgdorff, M., Mensen, M., & Cobelens, F. (2004). Hepatotoxicity of rifampin-pyrazinamide and isoniazid preventive therapy and tuberculosis treatment. Clinical Infectious Diseases, 39(4), 488–496. https://doi.org/10.1086/422645

    Article  CAS  Google Scholar 

  22. Chen, H., Wang, L., Yeh, J., Wu, X., Cao, Z., Wang, Y. A., Zhang, M., Yang, L., & Mao, H. (2010). Reducing non-specific binding and uptake of nanoparticles and improving cell targeting with an antifouling PEO-b-PγMPS (PEO-b-PγMPS- poly (ethylene oxide)-block-poly (γ-methacryloxypropyltrimethoxysilane)) copolymer coating. Biomaterials, 31, 5397–5407.

  23. He, Q., Gao, Y., Zhang, L., Zhang, Z., Gao, F., Ji, X., Li, Y., & Shi, J. (2011). A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials, 32(30), 7711–7720. https://doi.org/10.1016/j.biomaterials.2011.06.066

    Article  CAS  PubMed  Google Scholar 

  24. Sharma, S., & Meena, L. S. (2017). Potential of Ca2+ in Mycobacterium tuberculosis H37Rv pathogenesis and survival. Applied Biochemistry and Biotechnology, 181(2), 762–771. https://doi.org/10.1007/s12010-016-2247-9

    Article  CAS  PubMed  Google Scholar 

  25. Lee, J. E., Lee, N., Kim, H., Kim, J., Choi, S. H., Kim, J. H., Kim, T., Song, I. C., Park, S. P., Moon, W. K., & Hyeon, T. (2010). Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. Journal of the American Chemical Society, 132(2), 552–557. https://doi.org/10.1021/ja905793q

    Article  CAS  PubMed  Google Scholar 

  26. Muttil, P., Kaur, J., Kumar, K., Yadav, A. B., Sharma, R., & Misra, A. (2007). Inhalable microparticles containing large payload of anti-tuberculosis drugs. European Journal of Pharmaceutical Sciences, 32(2), 140–150. https://doi.org/10.1016/j.ejps.2007.06.006

    Article  CAS  PubMed  Google Scholar 

  27. Saraogi, G. K., Gupta, P., Gupta, U. D., Jain, N. K., & Agrawal, G. P. (2010). Gelatin nanocarriers as potential vectors for effective management of tuberculosis. International Journal of Pharmaceutics, 385(1-2), 143–149. https://doi.org/10.1016/j.ijpharm.2009.10.004

    Article  CAS  PubMed  Google Scholar 

  28. Olakanmi, O., Stokes, J. B., & Britigan, B. E. (2005). Gallium-inducible transferrin-independent iron acquisition is a property of many cell types: possible role of alterations in the plasma membrane. Journal of Investigative Medicine, 53(3), 143–153. https://doi.org/10.2310/6650.2005.00310

    Article  CAS  PubMed  Google Scholar 

  29. Britigan, B. E., Rasmussen, G. T., Olakanmi, O., & Cox, C. D. (2000). Iron acquisition from Pseudomonas aeruginosa siderophores by human phagocytes: an additional mechanism of host defense through iron sequestration? Inf. and immun., 68(3), 1271–1275. https://doi.org/10.1128/IAI.68.3.1271-1275.2000

    Article  CAS  Google Scholar 

  30. Gaddy, J. A., Arivett, B. A., McConnell, M. J., Lopez-Rojas, R., Pachon, J., & Actis, L. A. (2012). Role of acinetobactin-mediated iron acquisition functions in the interaction of Acinetobacter baumannii strain ATCC 19606T with human lung epithelial cells, Galleria mellonella caterpillars, and mice. Infection and immunity, 80(3), 1015–1024. https://doi.org/10.1128/IAI.06279-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Narayanasamy, P., Switzer, B. L., & Britigan, B. E. (2015). Prolonged-acting, multi-targeting gallium nanoparticles potently inhibit growth of both HIV and mycobacteria in co-infected human macrophages. Scientific Reports, 5(1), 8824. https://doi.org/10.1038/srep08824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Choi, S. R., Britigan, B. E., & Narayanasamy, P. (2017). Ga(III) nanoparticles inhibit growth of both Mycobacterium tuberculosis and HIV and release of interleukin-6 (IL-6) and IL-8 in co-infected macrophages. Antimicrobial agents and chemotherapy., 61(4), e02505–e02516. https://doi.org/10.1128/AAC.02505-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Choi, S.-r., Britigan, B. E., Moran, D. M., & Narayanasamy, P. (2017). Gallium nanoparticles facilitate phagosome maturation and inhibit growth of virulent Mycobacterium tuberculosis in macrophages. PLoS One, 12(5), e0177987. https://doi.org/10.1371/journal.pone.0177987

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nowacek, A. S., Miller, R. L., McMillan, J., Kanmogne, G., Kanmogne, M., Mosley, R. L., et al. (2009). NanoART synthesis, characterization, uptake, release and toxicology for human monocyte-macrophage drug delivery. Nanomedicine (London, England), 4(8), 903–917. https://doi.org/10.2217/nnm.09.71

    Article  CAS  Google Scholar 

  35. Meena, J., Singh, M., Sahare, P. D., & Meena, L. S. (2014). Interaction of nanoparticles in biological systems and their role in therapeutical treatment of tuberculosis and cancer. Journal Luminescene Applications, 1, 7–22.

    Google Scholar 

  36. Saraiva, C., Praça, C., Ferreira, R., Santos, T., Ferreira, L., & Bernardino, L. (2016). Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. Journal of Controlled Release, 235, 34–47. https://doi.org/10.1016/j.jconrel.2016.05.044

    Article  CAS  PubMed  Google Scholar 

  37. Cheng, R., Meng, F., Deng, C., Klok, H. A., & Zhong, Z. (2013). Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials, 34, 3647e3657.

    Google Scholar 

  38. Riahi, F., Derakhshan, M., Mosavat, A., Soleimanpour, S., & Rezaee, S. A. (2015). Evaluation of point mutation detection in Mycobacterium tuberculosis with isoniazid resistance using real-time PCR and TaqMan probe assay. Applied Biochemistry and Biotechnology, 175(5), 2447–2455. https://doi.org/10.1007/s12010-014-1442-9

    Article  CAS  PubMed  Google Scholar 

  39. Dang, G., Chen, L., Li, Z., Deng, X., Cui, Y., Cao, J., Yu, S., Pang, H., & Liu, S. (2015). Expression, purification and characterisation of secreted esterase Rv2525c from Mycobacterium tuberculosis. Applied Biochemistry and Biotechnology, 176(1), 1–12. https://doi.org/10.1007/s12010-015-1555-9

    Article  CAS  PubMed  Google Scholar 

  40. Lillebaek, T., Dirksen, A., Vynnycky, E., Baess, I., Thomsen, V. O., & Andersen, A. B. (2003). Stability of DNA patterns and evidence of Mycobacterium tuberculosis reactivation occurring decades after the initial infection. The Journal of Infectious Diseases, 188(7), 1032–1039. https://doi.org/10.1086/378240

    Article  CAS  PubMed  Google Scholar 

  41. Walter, K. A., Tamargo, R., Olivi, A., Burger, P. C., & Brem, H. (1995). Intratumoral chemotherapy. Neurosurgery, 37(6), 1129–1145. https://doi.org/10.1227/00006123-199512000-00013

    Article  Google Scholar 

  42. Wallis, R. S., Pai, M., Menzies, D., Doherty, T. M., Walzl, G., Perkins, M. D., & Zumla, A. (2010). Biomarkers and diagnostics for tuberculosis: progress, needs, and translation into practice. The Lancet, 375(9729), 1920–1937. https://doi.org/10.1016/S0140-6736(10)60359-5

    Article  CAS  Google Scholar 

  43. Dhanasekaran, S., Jenum, S., Stavrum, R., Ritz, C., & Jepsen, D. F. (2013). Identification of biomarkers for Mycobacterium tuberculosis infection and disease in BCG-vaccinated young children in Southern India. Genes and Immunity, 14(6), 356–364. https://doi.org/10.1038/gene.2013.26

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors acknowledge financial support from the Department of Science and Technology-SERB, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, under the research project GAP0145.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laxman S. Meena.

Ethics declarations

Conflict of Interest

There authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivangi, Meena, L.S. A Novel Approach in Treatment of Tuberculosis by Targeting Drugs to Infected Macrophages Using Biodegradable Nanoparticles. Appl Biochem Biotechnol 185, 815–821 (2018). https://doi.org/10.1007/s12010-018-2695-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2695-5

Keywords

Navigation