Skip to main content

Advertisement

Log in

Unusual Stability of a Recombinant Verrucomicrobium spinosum Tyrosinase to Denaturing Agents and Its Use for a Production of a Protein with Adhesive Properties

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Tyrosinases catalyze oxidation of phenols with a formation of biphenols, quinones, and highly polymerized melanins. Tyrosinases have prospects for industrial use to remove phenols, also in biosensors, in bioorganic synthesis, and for a production of biocompatible adhesives (medical glues). Despite growing fields of potential applications, a selection of commercially available tyrosinases are currently limited to a single enzyme which is isolated from fruiting bodies of mushrooms. This article describes a preparation of recombinant tyrosinase from a bacterium Verrucomicrobium spinosum using a heterologous expression in Escherichia coli. Recombinant V. spinosum tyrosinase has high specific activity (13,200 U/mg). A resistance of the enzyme was investigated to chemical agents used to denature proteins and keep poorly solvable proteins in a solution. The enzyme preserves activity in the presence of urea and retains at least a fraction of its enzymatic activity at concentrations of urea up to 4.5 M. An addition of sodium lauroyl sarcosinate to 1 or 2% activates the tyrosinase. Novel means of quantitatively expressing tyrosinase activity is described in this article. The method uses a set of parameters obtained from non-linear estimation of the progress curves and is suitable for enzymatic reactions which do not comply with Michaelis–Menten kinetics. Tyrosinase may be used to introduce into proteins a post-translational modification which is a conversion of tyrosine residues (Tyr) into residues of 3,4-dioxyphenylalanine (DOPA). The presence of DOPA provides the polypeptides with a capability of strong molecular adhesion. Co-expression of tyrosinase and a recombinant protein mimicking marine mussel-encoded adhesive proteins resulted in obtaining of the protein in which at least a part of Tyr residues had been converted to DOPA. The DOPA-containing protein had high adhesion strength (2.5 MPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Haghbeen, K., & Tan, E. W. (2003). Direct spectrophotometric assay of monooxygenase and oxidase activities of mushroom tyrosinase in the presence of synthetic and natural substrates. Analytical Biochemistry, 312(1), 23–32. https://doi.org/10.1016/S0003-2697(02)00408-6.

    Article  CAS  Google Scholar 

  2. Fairhead, M., & Thöny-Meyer, L. (2010). Role of the C-terminal extension in a bacterial tyrosinase. The FEBS Journal, 277(9), 2083–2095. https://doi.org/10.1111/j.1742-4658.2010.07621.x.

    Article  CAS  Google Scholar 

  3. Ensuncho, L., Alvarez-Cuenca, M., & Legge, R. L. (2005). Bioprocess Biosyst. Eng, 27, 185–191.

    CAS  Google Scholar 

  4. Ikehata, K., & Nicel, J. A. (2000). Bioresour. Technology, 74, 191–199.

    CAS  Google Scholar 

  5. Tembe, S., Karve, M., & Inamdar, S. (2006). Development of electrochemical biosensor based on tyrosinase immobilized in composite biopolymeric film. Analytical Biochemistry, 349(1), 72–77. https://doi.org/10.1016/j.ab.2005.11.016.

    Article  CAS  Google Scholar 

  6. Nistor, C., Emneus, J., & Gorton, L. (1999). Improved stability and altered selectivity of tyrosinase based graphite electrodes for detection of phenolic compounds. Anal. Chim. Act, 387(3), 309–326. https://doi.org/10.1016/S0003-2670(99)00071-9.

    Article  CAS  Google Scholar 

  7. Irimia-Vladu, M. (2014). “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chemical Society Reviews, 43(2), 588–610. https://doi.org/10.1039/C3CS60235D.

    Article  CAS  Google Scholar 

  8. Koyanagi, T., Katayama, T., & Suzuki, H. (2005). Effective production of 3,4-dihydroxyphenyl-l-alanine (l-DOPA) with Erwinia herbicola cells carrying a mutant transcriptional regulator TyrR. Journal of Biotechnology, 115(3), 303–306. https://doi.org/10.1016/j.jbiotec.2004.08.016.

    Article  CAS  Google Scholar 

  9. Lee, B. P., Messersmith, P., & Israelachvili, J. (2011). Mussel-inspired adhesives and coatings. Annual Review of Materials Research, 41(1), 99–132. https://doi.org/10.1146/annurev-matsci-062910-100429.

    Article  CAS  Google Scholar 

  10. Lin, Q., Gourdon, D., & Sun, C. (2007). Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proceedings of the National Academy of Sciences of the United States of America, 104(10), 3782–3786. https://doi.org/10.1073/pnas.0607852104.

    Article  CAS  Google Scholar 

  11. Lu, Q., Danner, E., Waite, J. H., & Israelachvili, J. N. (2013). J. R. Soc. Interface, 10, 79.

    Article  Google Scholar 

  12. Yu, J., Kan, Y., & Rapp, M. (2013). Adaptive hydrophobic and hydrophilic interactions of mussel foot proteins with organic thin films. Proceedings of the National Academy of Sciences of the United States of America, 110(39), 15680–15685. https://doi.org/10.1073/pnas.1315015110.

    Article  CAS  Google Scholar 

  13. Clancy, S. K., Sodano, A., & Cunningham, D. J. (2016). Marine bioinspired underwater contact adhesion. Biomacromolecules, 17(5), 1869–1874. https://doi.org/10.1021/acs.biomac.6b00300.

    Article  CAS  Google Scholar 

  14. Li, A., Mu, Y., & Jiang, W. (2015). A mussel-inspired adhesive with stronger bonding strength under underwater conditions than under dry conditions. ChemCommun (Camb), 51(44), 9117–9120. https://doi.org/10.1039/C5CC00101C.

    Article  CAS  Google Scholar 

  15. Jeon, E. Y., Hwang, B. H., & Yang, Y. J. (2015). Rapidly light-activated surgical protein glue inspired by mussel adhesion and insect structural crosslinking. Biomaterials, 67, 11–19. https://doi.org/10.1016/j.biomaterials.2015.07.014.

    Article  CAS  Google Scholar 

  16. Selinheimo, E., NiEidhin, D., & Steffensen, C. (2007). Comparison of the characteristics of fungal and plant tyrosinases. Journal of Biotechnology, 130(4), 471–480. https://doi.org/10.1016/j.jbiotec.2007.05.018.

    Article  CAS  Google Scholar 

  17. Kamal, U., Ayesha, S. Ali & Sharique, A. Ali. (2014). Enzyme Research, 6 pages.

  18. Santos, M. C., Pereira, P. R., Gutarra, M. E., Torres, A. G., Pereira, K. S. & Salgado A. M. (2015). XX Congresso Brasileiro de Engenharia Quimica, 8 pages.

  19. Marková, E., Kotik, M., Křenková, A., Man, P., Haudecoeur, R., Boumendjel, A., Hardré, R., Mekmouche, Y., Courvoisier-Dezord, E., Réglier, M., & Martínková, L. (2016). J. Agric. Food Chemistry, 64(14), 2925–2931. https://doi.org/10.1021/acs.jafc.6b00286.

    Article  Google Scholar 

  20. Zou, Y., Hu, W., Jiang, A., & Ma, K. (2014). Partial purification and characterization of a novel extracellular tyrosinase from Auricularia auricula. Applied Biochemistry and Biotechnology, 172(3), 1460–1469. https://doi.org/10.1007/s12010-013-0638-8.

    Article  CAS  Google Scholar 

  21. Inamdar, S., Joshi, S., Bapat, V., & Jadhav, J. (2014). Purification and characterization of RNA allied extracellular tyrosinase from Aspergillus species. Applied Biochemistry and Biotechnology, 172(3), 1183–1193. https://doi.org/10.1007/s12010-013-0555-x.

    Article  CAS  Google Scholar 

  22. Aoife, M., Evelyn, M., Doyle, B. S., Kevin, E. & O’Connor. (2007). Enzyme and microbial technology, (40), 1435–1441.

  23. Agarwal, P., Singh, J., & Singh, R. P. (2017). Molecular cloning and characteristic features of a novel extracellular tyrosinase from Aspergillus niger PA2. Applied Biochemistry and Biotechnology, 182(1), 1–15. https://doi.org/10.1007/s12010-016-2306-2.

    Article  CAS  Google Scholar 

  24. Lim, S., Choi, Y. S., & Kang, D. G. (2010). The adhesive properties of coacervated recombinant hybrid mussel adhesive proteins. Biomaterials, 31(13), 3715–3722. https://doi.org/10.1016/j.biomaterials.2010.01.063.

    Article  CAS  Google Scholar 

  25. Choi, Y. S., Yang, Y. J., & Yang, B. (2012). In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli. Microbial Cell Factories, 11(1), 139. https://doi.org/10.1186/1475-2859-11-139.

    Article  CAS  Google Scholar 

  26. Yang, B., Kang, D. G., & Seo, J. H. (2013). A comparative study on the bulk adhesive strength of the recombinant mussel adhesive protein fp-3. Biofouling, 29(5), 483–490. https://doi.org/10.1080/08927014.2013.782541.

    Article  CAS  Google Scholar 

  27. Yu, J., Wei, W., & Menyo, M. S. (2013). Adhesion of mussel foot protein-3 to TiO2 surfaces: the effect of pH. Biomacromolecules, 14(4), 1072–1077. https://doi.org/10.1021/bm301908y.

    Article  CAS  Google Scholar 

  28. Haemers, S., Koper, G. J., & Frens, G. (2003). Effect of oxidation rate on cross-linking of mussel adhesive proteins. Biomacromolecules, 4(3), 632–640. https://doi.org/10.1021/bm025707n.

    Article  CAS  Google Scholar 

  29. Monahan, J., & Wilker, J. J. (2004). Cross-linking the protein precursor of marine mussel adhesives: bulk measurements and reagents for curing. Langmuir, 20(9), 3724–3729. https://doi.org/10.1021/la0362728.

    Article  CAS  Google Scholar 

  30. Jing, Yu, Yajing, Kan, Michael, Rapp, Danner, E., Wei, W., Saurabh, D., Dusty, R. M., Yunfei, C., Herbert, W. & Jacob, N. (2013). Proc Natl. Acad. Sci. USA, 110(39), 15680–15685.

Download references

Funding

This study was funded by a grant from the Ministry of Education and Science of the Republic of Kazakhstan, grant number 0115РК01798.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shustov.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Axambayeva, A.S., Zhaparova, L.R., Shagyrova, Z.S. et al. Unusual Stability of a Recombinant Verrucomicrobium spinosum Tyrosinase to Denaturing Agents and Its Use for a Production of a Protein with Adhesive Properties. Appl Biochem Biotechnol 185, 736–754 (2018). https://doi.org/10.1007/s12010-017-2686-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2686-y

Keywords

Navigation