Skip to main content
Log in

Evaluation of Octyl-β-D-Glucopyranoside (OGP) for Cytotoxic, Hemolytic, Thrombolytic, and Antibacterial Activity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The current study indicates that octyl-β-D-glucopyranoside (OGP) as a detergent which has the ability to make the lipid layer stiff. OGP was subjected for toxicity studies and in vitro cytotoxicty assays on cancerous HeLa and non-cancerous myoblasts H9c2 cell lines. Test against aquatic organisms were carried out in Artemia salina and LC50 values were calculated. Hemolytic activity tested for blood bio-compalibity showed hemolysis rate of 10–16%, followed by thrombolytic activity to burst the clots in blood. Also, the samples showed good lysis when compared to the standard streptokinase. Furthermore, α-amylase activity has been carried out to check the inhibition of α-amylase by the OGP. Finally, antibacterial activity has been tested against four different pathogens and their MIC values have been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rather, M. Y., Mishra, S., & Chand, S. (2010). β-Glucosidase catalyzed synthesis of octyl-β-d-glucopyranoside using whole cells of Pichia etchellsii in micro aqueous media. Journal of Biotechnology, 150(4), 490–496. https://doi.org/10.1016/j.jbiotec.2010.09.933.

    Article  CAS  Google Scholar 

  2. Newman, M. J., Foster, D. L., Wilson, T. H., & Kaback, H. R. (1981). Purification and reconstitution of functional lactose carrier from Escherichia coli. Journal of Biological Chemistry, 256(22), 11804–11808.

    CAS  Google Scholar 

  3. Vulfson, E. N., Patel, R., & Law, B. A. (1990). Alkyl-β-glucoside synthesis in a water-organic two-phase system. Biotechnology Letters, 12(6), 397–402. https://doi.org/10.1007/BF01024392.

    Article  CAS  Google Scholar 

  4. Rosevear, P., VanAken, T., Baxter, J., & Ferguson-Miller, S. (1980). Alkyl glycoside detergents: a simpler synthesis and their effects on kinetic and physical properties of cytochrome c oxidase. Biochemistry, 19(17), 4108–4115. https://doi.org/10.1021/bi00558a032.

    Article  CAS  Google Scholar 

  5. Lopez, O., Cocera, M., Parra, J. L., & De La Maza, A. (2001). Influence of the alkyl chain length of alkyl glucosides on their ability to solubilize phosphatidylcholine liposomes. Colloids and surfaces A: physicochemical and engineering aspects, 193(1-3), 221–229. https://doi.org/10.1016/S0927-7757(01)00698-7.

    Article  CAS  Google Scholar 

  6. Wegener, M., & Von Rybinski, W. (2001). Surfactant systems for microemulsions and their importance for applications. Tenside, Surfactants, Detergents, 38, 24–29.

    CAS  Google Scholar 

  7. Krylova, O. O., Jahnke, N., & Keller, S. (2010). Membrane solubilisation and reconstitution by octylglucoside: comparison of synthetic lipid and natural lipid extract by isothermal titration calorimetry. Biophysical Chemistry, 150(1-3), 105–111. https://doi.org/10.1016/j.bpc.2010.03.013.

    Article  CAS  Google Scholar 

  8. Mahata, S., Pandey, A., Shukla, S., Tyagi, A., Husain, S. A., Das, B. C., & Bharti, A. C. (2013). Anticancer activity of Phyllanthus emblica Linn.(Indian gooseberry): inhibition of transcription factor AP-1 and HPV gene expression in cervical cancer cells. Nutrition and Cancer, 65(sup1), 88–97. https://doi.org/10.1080/01635581.2013.785008.

    Article  CAS  Google Scholar 

  9. Yin, Y., Guan, Y., Duan, J., Wei, G., Zhu, Y., Quan, W., & Wen, A. (2013). Cardioprotective effect of Danshensu against myocardial ischemia/reperfusion injury and inhibits apoptosis of H9c2 cardiomyocytes via Akt and ERK1/2 phosphorylation. European Journal of Pharmacology, 699(1-3), 219–226. https://doi.org/10.1016/j.ejphar.2012.11.005.

    Article  CAS  Google Scholar 

  10. Arulvasu, C., Jennifer, S. M., Prabhu, D., & Chandhirasekar, D. (2014). Toxicity effect of silver nanoparticles in brine shrimp Artemia. The Scientific World Journal, 2014, 1–10. https://doi.org/10.1155/2014/256919.

    Article  Google Scholar 

  11. Krishnaraju, A. V., Rao, T. V., Sundararaju, D., Vanisree, M., Tsay, H. S., & Subbaraju, G. V. (2005). Assessment of bioactivity of Indian medicinal plants using brine shrimp (Artemia salina) lethality assay. International Journal of Applied Science and Engineering, 3, 125–134.

    Google Scholar 

  12. Svensson, B. M., Mathiasson, L., Mårtensson, L., & Bergström, S. (2005). Artemia salina as test organism for assessment of acute toxicity of leachate water from landfills. Environmental Monitoring and Assessment, 102(1-3), 309–321. https://doi.org/10.1007/s10661-005-6029-z.

    Article  CAS  Google Scholar 

  13. Vinjamuri, S., Shanker, D., Ramesh, R. S., & Nagarajan, S. (2015). In vitro evaluation of hemolytic activity and cell viability assay of hexanoic extracts of Bridelia ferruginea benth. World Journal of Pharmacy and Pharmaceutical Sciences, 4, 1263–1268.

    Google Scholar 

  14. Seeman, P. (1972). The membrane actions of anesthetics and tranquilizers. Pharmacological Reviews, 24(4), 583–655.

    CAS  Google Scholar 

  15. Bae, J., Choi, E. H., & Pan, J. G. (2011). Efficient synthesis of octyl-β-D-galactopyranoside by Bacillus spore-displayed β-galactosidase using an amphiphilic 1, 2-dimethoxyethane co-solvent. Enzyme and Microbial Technology, 48(3), 232–238. https://doi.org/10.1016/j.enzmictec.2010.11.002.

    Article  CAS  Google Scholar 

  16. Rahman, M. A., Sultana, R., Emran, T. B., Islam, M. S., Rahman, M. A., Chakma, J. S., & Hasan, C. M. M. (2013). Effects of organic extracts of six Bangladeshi plants on in vitro thrombolysis and cytotoxicity. BMC Complementary and Alternative Medicine, 13(1), 25. https://doi.org/10.1186/1472-6882-13-25.

    Article  Google Scholar 

  17. Feng, J., Yang, X. W., & Wang, R. F. (2011). Bio-assay guided isolation and identification of α-glucosidase inhibitors from the leaves of Aquilaria sinensis. Phytochemistry, 72(2-3), 242–247. https://doi.org/10.1016/j.phytochem.2010.11.025.

    Article  CAS  Google Scholar 

  18. Sancheti, S., & Seo, S. (2009). Chaenomeles sinensis: a potent α-and β-glucosidase inhibitor. American Journal of Pharmacology and Toxicology, 4, 8–11.

    Article  Google Scholar 

  19. Liu, Y. C., Lin, W. Y., Jhang, Y. R., Huang, S. H., Wu, C. P., & Wu, H. T. (2011). Efficiency of DNA transfection of rat heart myoblast cells H9c2 (2-1) by either polyethyleneimine or electroporation. Applied Biochemistry and Biotechnology, 164(7), 1172–1182. https://doi.org/10.1007/s12010-011-9203-5.

    Article  CAS  Google Scholar 

  20. Singh, B., Kaur, T., Kaur, S., Manhas, R. K., & Kaur, A. (2015). An alpha-glucosidase inhibitor from an endophytic Cladosporium sp. with potential as a biocontrol agent. Applied Biochemistry and Biotechnology, 175(4), 2020–2034. https://doi.org/10.1007/s12010-014-1325-0.

    Article  CAS  Google Scholar 

  21. Nickavar, B., & Mosazadeh, G. (2010). Influence of three Morus species extracts on 훼-amylase activity. Iranian Journal of Pharmaceutical Research, 8, 115–119.

    Google Scholar 

  22. Gao, H., Huang, Y. N., Gao, B., Li, P., Inagaki, C., & Kawabata, J. (2008). Inhibitory effect on α-glucosidase by Adhatoda vasica Nees. Food Chemistry, 108(3), 965–972. https://doi.org/10.1016/j.foodchem.2007.12.002.

    Article  CAS  Google Scholar 

  23. Santimone, M., Koukiekolo, R., Moreau, Y., Le Berre, V., Rougé, P., Marchis-Mouren, G., & Desseaux, V. (2004). Porcine pancreatic α-amylase inhibition by the kidney bean (Phaseolus vulgaris) inhibitor (α-AI1) and structural changes in the α-amylase inhibitor complex. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1696, 181–190.

    Article  CAS  Google Scholar 

  24. Malagoli, D. (2007). A full-length protocol to test hemolytic activity of palytoxin on human erythrocytes. Invertebrate Survival Journal, 4, 92–94.

    Google Scholar 

  25. Sherwani, S. K., Khan, M. M., Zubair, A., Shah, M. A., & Kazmi, S. U. (2013). Evaluation of in vitro thrombolytic activity of Bougainvillea spectabilis leaf extract. International Journal of Pharmaceutical Sciences Review and Research, 21, 6–9.

    Google Scholar 

  26. Unnikrishnan, P. S., Suthindhiran, K., & Jayasri, M. A. (2014). Inhibitory potential of Turbinaria ornata against key metabolic enzymes linked to diabetes. BioMed Research International, 2014, 1–10. https://doi.org/10.1155/2014/783895.

    Article  Google Scholar 

  27. Tharachand, C., Selvaraj, C. I., & Abraham, Z. (2015). Comparative evaluation of anthelmintic and antibacterial activities in leaves and fruits of Garcinia cambogia (Gaertn.) desr. and Garcinia indica (Dupetit-Thouars) choisy. Brazilian Archives of Biology and Technology, 58(3), 379–386. https://doi.org/10.1590/S1516-8913201500062.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chinnadurai Immanuel Selvaraj or Selvaraj Mohana Roopan.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinesh, M., Deepika, S., HarishKumar, R. et al. Evaluation of Octyl-β-D-Glucopyranoside (OGP) for Cytotoxic, Hemolytic, Thrombolytic, and Antibacterial Activity. Appl Biochem Biotechnol 185, 450–463 (2018). https://doi.org/10.1007/s12010-017-2661-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2661-7

Keywords

Navigation