Skip to main content
Log in

Enhanced Bioactivity of the Anti-LOX-1 scFv Engineered by Multimerization Strategy

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Single-chain variable fragment (scFv) antibodies as therapeutic agents have the potential to reduce the production cost and immunogenicity relative to monoclonal antibodies, but their monovalency and lack of a fragment crystallizable region can lead to reduced function. Multimerization is one strategy for recovering the function; however, their application is limited by the production of multimeric proteins. In our previous study, an anti-lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) scFv showed potential use in diagnosis and therapy of atherosclerotic diseases, but is limited by its inherent low antigen-binding activity. In this study, to improve the efficacy of the anti-LOX-1 scFv, we constructed the anti-LOX-1 scFv multimers by modifying the linker length between the variable domains of the scFv or by fusing the scFv with self-merization domains and expressed these scFv multimers in Brevibacillus choshinensis hosts. After optimization, all of the scFv multimers obtained efficient secretion expression. Compared with the scFv monomer, the multimers that are successfully fractionated displayed increased neutralization activity and showed elevated antigen-binding avidity, especially the tetramer, which improved the antigen avidity by two orders of magnitude. Moreover, the scFv dimer and the tetramer both displayed better stability and longer half-life in serum, which can be attractive candidates for the next-generation anti-LOX-1 therapeutic antibody.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang, T., Huang, Z., Dai, Y., Chen, X., Zhu, P., & Du, G. (2006). The expression of recombinant human LOX-1 and identifying its mimic ligands by fluorescence polarization-based high throughput screening. Journal of Biotechnology, 125, 492–502.

    Article  CAS  Google Scholar 

  2. Kobayashi, N., Hata, N., Kume, N., Seino, Y., Inami, T., Yokoyama, S., Shinada, T., Tomita, K., Kaneshige, T., & Mizuno, K. (2011). Soluble lectin-like oxidized low-density lipoprotein receptor-1 as an early biomarker for ST elevation myocardial infarction: time-dependent comparison with other biomarkers: time-dependent comparison with other biomarkers. Circulation Journal, 75, 1433–1439.

    Article  CAS  Google Scholar 

  3. Lin, Z., Cao, P., & Lei, H. (2008). Identification of a neutralizing scFv binding to human vascular endothelial growth factor 165 (VEGF165) using a phage display antibody library. Applied Biochemistry and Biotechnology, 144, 15–26.

    Article  CAS  Google Scholar 

  4. Pan, Y., Mao, W., Liu, X., Xu, C., He, Z., Wang, W., & Yan, H. (2012). Selection of single chain variable fragments specific for the human-inducible costimulator using ribosome display. Applied Biochemistry and Biotechnology, 168, 967–979.

    Article  CAS  Google Scholar 

  5. Naumann, J. M., Küttner, G., & Bureik, M. (2011). Expression and secretion of a CB4-1 scFv-GFP fusion protein by fission yeast. Applied Biochemistry and Biotechnology, 163, 80–89.

    Article  CAS  Google Scholar 

  6. Skrlj, N., Drevenšek, G., Hudoklin, S., Romih, R., Curin Šerbec, V., & Dolinar, M. (2013). Recombinant single-chain antibody with the Trojan peptide penetratin positioned in the linker region enables cargo transfer across the blood-brain barrier. Applied Biochemistry and Biotechnology, 169, 159–169.

    Article  CAS  Google Scholar 

  7. Iwamoto, S., Fujita, Y., Kakino, A., Yanagida, K., Matsuda, H., Yoshimoto, R., & Sawamura, T. (2011). An alternative protein standard to measure activity of LOX-1 ligand containing apoB (LAB) - utilization of anti-LOX-1 single- chain antibody fused to apoB fragment. Journal of Atherosclerosis and Thrombosis, 18, 818–828.

    Article  CAS  Google Scholar 

  8. Asano, R., Hagiwara, Y., Koyama, N., Masakari, Y., Orimo, R., Arai, K., Ogata, H., Furumoto, S., Umetsu, M., & Kumagai, I. (2013). Multimerization of anti-(epidermal growth factor receptor) IgG fragments induces an antitumor effect: the case for humanized 528 scFv multimers. The FEBS Journal, 280, 4816–4826.

    Article  CAS  Google Scholar 

  9. Sakamoto, S., Pongkitwitoon, B., Nakamura, S., Sasaki-Tabata, K., Tanizaki, Y., Maenaka, K., Tanaka, H., & Morimoto, S. (2011). Construction, expression, and characterization of a single-chain variable fragment antibody against 2,4-dichlorophenoxyacetic acid in the hemolymph of silkworm larvae. Applied Biochemistry and Biotechnology, 164, 715–728.

    Article  CAS  Google Scholar 

  10. Xiong, C. Y., Natarajan, A., Shi, X. B., Denardo, G. L., & Denardo, S. J. (2006). Development of tumor targeting anti-MUC-1 multimer: effects of di-scFv unpaired cysteine location on PEGylation and tumor binding. Protein Engineering, Design & Selection, 19, 359–367.

    Article  CAS  Google Scholar 

  11. Libyh, M. T., Goossens, D., Oudin, S., Gupta, N., Dervillez, X., Juszczak, G., Cornillet, P., Bougy, F., Reveil, B., Philbert, F., Tabary, T., Klatzmann, D., Rouger, P., & Cohen, J. H. (1997). A recombinant human scFv anti-Rh(D) antibody with multiple valences using a C-terminal fragment of C4-binding protein. Blood, 90, 3978–3983.

    CAS  Google Scholar 

  12. Asano, R., Ikoma, K., Sone, Y., Kawaguchi, H., Taki, S., Hayashi, H., Nakanishi, T., Umetsu, M., Katayose, Y., Unno, M., Kudo, T., & Kumagai, I. (2010). Highly enhanced cytotoxicity of a dimeric bispecific diabody, the hEx3 tetrabody. The Journal of Biological Chemistry, 285, 20844–20849.

    Article  CAS  Google Scholar 

  13. Kumagai, I., Asano, R., Nakanishi, T., Hashikami, K., Tanaka, S., Badran, A., Sanada, H., & Umetsu, M. (2010). Integration of PEGylation and refolding for renaturation of recombinant proteins from insoluble aggregates produced in bacteria--application to a single-chain Fv fragment. Journal of Bioscience and Bioengineering, 109, 447–452.

    Article  CAS  Google Scholar 

  14. Hanagata, H., Mizukami, M., & Miyauchi, A. (2014). Efficient expression of antibody fragments with the Brevibacillus expression system. Antibodies, 3, 242–252.

    Article  Google Scholar 

  15. Hu, W., Xiang, J. Y., Kong, P., Liu, L., Xie, Q., & Xiang, H. (2017). Expression and characterization of a single-chain variable fragment against human LOX-1 in Escherichia coli and Brevibacillus choshinensis. Journal of Microbiology and Biotechnology, 27, 965–974.

    Article  Google Scholar 

  16. Mu, T., Liang, W., Ju, Y., Wang, Z., Wang, Z., Roycik, M. D., Sang, Q. X., Yu, D., Xiang, H., & Fang, X. (2013). Efficient soluble expression of secreted matrix metalloproteinase 26 in Brevibacillus choshinensis. Expr. Purif., 91, 125–133.

    Article  CAS  Google Scholar 

  17. Liu, M., Wang, X., Yin, C., Zhang, Z., Lin, Q., Zhen, Y., & Huang, H. (2007). Targeting TNF-alpha with a tetravalent mini-antibody TNF-TeAb. The Biochemical Journal, 406, 237–246.

    Article  CAS  Google Scholar 

  18. Malashkevich, V. N., Kammerer, R. A., Efimov, V. P., Schulthess, T., & Engel, J. (1996). The crystal structure of a five-stranded coiled coil in COMP: a prototype ion channel? Science, 274, 761–765.

    Article  CAS  Google Scholar 

  19. Zhang, J., Li, Q., Nguyen, T. D., Tremblay, T. L., Stone, E., To, R, Kelly, J., & Roger MacKenzie, C. (2004). A pentavalent single-domain antibody approach to tumor antigen discovery and the development of novel proteomics reagents. Journal of Molecular Biology, 341, 161–169.

    Article  CAS  Google Scholar 

  20. Wang, L., Liu, X., Zhu, X., Wang, L., Wang, W., Liu, C., Cui, H., Sun, M., & Gao, B. (2013). Generation of single-domain antibody multimers with three different self-associating peptides. Protein Engineering, Design & Selection, 26, 417–423.

    Article  CAS  Google Scholar 

  21. Choy, C. J., & Berkman, C. E. (2016). A method to determine the mode of binding for GCPII inhibitors using bio-layer interferometry. Journal of Enzyme Inhibition and Medicinal Chemistry, 31, 1690–1693.

    Article  CAS  Google Scholar 

  22. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10, 845–858.

    Article  CAS  Google Scholar 

  23. Schuler, L. D., Walde, P., Luisi, P. L., & van Gunsteren, W. F. (2001). Molecular dynamics simulation of n-dodecyl phosphate aggregate structures. European Biophysics Journal, 30, 330–343.

    Article  CAS  Google Scholar 

  24. Pierce, B. G., Wiehe, K., Hwang, H., Kim, B. H., Vreven, T., & Weng, Z. (2014). ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics, 30, 1771–1773.

    Article  CAS  Google Scholar 

  25. Maehashi, K., Matano, M., Saito, M., & Udaka, S. (2010). Extracellular productionof riboflavin-binding protein, a potential bitter inhibitor, by Brevibacillus choshinensis. Protein Expression and Purification, 71, 85–90.

    Article  CAS  Google Scholar 

  26. Panchal, J., Kotarek, J., Marszal, E., & Topp, E. M. (2014). Analyzing subvisible particles in protein drug products: a comparison of dynamic light scattering (DLS) and resonant mass measurement (RMM). The AAPS Journal, 16, 440–451.

    Article  CAS  Google Scholar 

  27. Borase, H. P., Patil, C. D., Salunkhe, R. B., Suryawanshi, R. K., Kim, B. S., Bapat, V. A., & Patil, S. V. (2015). Bio-functionalized silver nanoparticles: a novel colorimetric probe for cysteine detection. Applied Biochemistry and Biotechnology, 175, 3479–3493.

    Article  CAS  Google Scholar 

  28. Soraruf, D., Roosen-Runge, F., Grimaldo, M., Zanini, F., Schweins, R., Seydel, T., Zhang, F., Roth, R., Oettel, M., & Schreiber, F. (2014). Protein cluster formation in aqueous solution in the presence of multivalent metal ions—a light scattering study. Soft Matter, 10, 894–902.

    Article  CAS  Google Scholar 

  29. Combet, C., Blanchet, C., Geourjon, C., & Deléage, G. (2000). NPS@: network protein sequence analysis. Trends in Biochemical Sciences, 25, 147–150.

    Article  CAS  Google Scholar 

  30. Hayashida, K., Kume, N., Minami, M., & Kita, T. (2002). Lectin-like oxidized LDL receptor-1 (LOX-1) supports adhesion of mononuclear leukocytes and a monocyte-like cell line THP-1 cells under static and flow conditions. FEBS Letters, 511, 133–138.

    Article  CAS  Google Scholar 

  31. Asano, R., Koyama, N., Hagiwara, Y., Masakari, Y., Orimo, R., Arai, K., Ogata, H., Furumoto, S., Umetsu, M., & Kumagai, I. (2016). Anti-EGFR scFv tetramer (tetrabody) with a stable monodisperse structure, strong anticancer effect, and a long in vivo half-life. FEBS Open Bio, 6, 594–602.

    Article  CAS  Google Scholar 

  32. Power, B. E., Doughty, L., Shapira, D. R., Burns, J. E., Bayly, A. M., Caine, J. M., Liu, Z., Scott, A. M., Hudson, P. J., & Kortt, A. A. (2003). Noncovalent scFv multimers of tumor-targeting anti-Lewis(y) hu3S193 humanized antibody. Protein Science, 12, 734–747.

    Article  CAS  Google Scholar 

  33. Dolezal, O., Pearce, L. A., Lawrence, L. J., McCoy, A. J., Hudson, P. J., & Kortt, A. A. (2000). ScFv multimers of the anti-neuraminidase antibody NC10: shortening of the linker in single-chain Fv fragment assembled in V(L) to V(H) orientation drives the formation of dimers, trimers, tetramers and higher molecular mass multimers. Protein Engineering, 13, 565–574.

    Article  CAS  Google Scholar 

  34. Robinson, C. R., & Sauer, R. T. (1998). Optimizing the stability of single-chain proteins by linker length and composition mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 95, 5929–5934.

    Article  CAS  Google Scholar 

  35. Kelly, M. P., Lee, F. T., Tahtis, K., Power, B. E., Smyth, F. E., Brechbiel, M. W., Hudson, P. J., & Scott, A. M. (2008). Tumor targeting by a multivalent single-chain Fv (scFv) anti-Lewis Y antibody construct. Cancer Biotherapy & Radiopharmaceuticals, 23, 411–423.

    Article  CAS  Google Scholar 

  36. Guggenbichler, F., Büttner, C., Rudolph, W., Zimmermann, K., Gunzer, F., & Pöhlmann, C. (2016). Design of a covalently linked human interleukin-10 fusion protein and its secretory expression in Escherichia coli. Applied Microbiology and Biotechnology, 100, 10479–10493.

    Article  CAS  Google Scholar 

  37. Todorovska, A., Roovers, R. C., Dolezal, O., Kortt, A. A., Hoogenboom, H. R., & Hudson, P. J. (2001). Design and application of diabodies, triabodies and tetrabodies for cancer targeting. Journal of Immunological Methods, 248, 47–66.

    Article  CAS  Google Scholar 

  38. Kortt, A. A., Dolezal, O., Power, B. E., & Hudson, P. J. (2001). Dimeric and trimeric antibodies: high avidity scFvs for cancer targeting. Biomolecular Engineering, 18, 95–108.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [81072564], the Science and Technology Development Planning of Jilin [20140203001YY], and the Jilin Province Development and Reform Commission [2014Y080].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Xiang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 119 kb)

Supplementary figure 2

Structural characterization of the scFv multimers. (a) Fluorescence spectroscopy excited at the wavelength of 295 nm. (b) Far-UV CD spectrum in the range of 200-240 nm (JPG 65.8 KB)

High Resolution image (TIF 350 KB)

ESM 3

(DOC 78 kb)

Supplementary figure 4

The residual LOX-1 binding activity of the scFv mltimers incubated in mouse serum (JPG 48.5 KB)

High Resolution image (TIF 2.55 MB)

Supplementary figure 5

The mode chart of the engineered scFv proteins. (a) monomer; (b) dimer; (c) trimer; (d) tetramer; (e) heptamer in front vew; (f) heptemer in side view. These structures (N-terminus to C-terminus) were marked with a gradient color (blue to red) (JPG 162 KB)

High Resolution image (TIF 2.19 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Xie, Q., Liu, L. et al. Enhanced Bioactivity of the Anti-LOX-1 scFv Engineered by Multimerization Strategy. Appl Biochem Biotechnol 185, 233–247 (2018). https://doi.org/10.1007/s12010-017-2649-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2649-3

Keywords

Navigation