Skip to main content

Advertisement

Log in

Osmolyte Type and the Osmolarity Level Affect Chondrogenesis of Mesenchymal Stem Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The inductive effects of increased osmolarity on chondrogenesis are well approved. However, the effects of the osmolyte agent invoked to induce hyperosmolarity are largely neglected. Herein, we scrutinized how hyperosmotic conditions acquired by addition of different osmolytes would impact chondrogenesis. We briefly assessed whether such conditions would differentially affect hypertrophy and angiogenesis during MSC chondrogenesis. Chondrogenic and hypertrophic marker expression along with VEGF secretion during adipose-derived (AD)-MSC chondrogenesis under three osmolarity levels (350, 450, and 550 mOsm) using three different osmolytes (NaCl, sorbitol, and PEG) were assessed. MTT assay, qRT-PCR, immunocytochemistry, Alcian Blue staining, ELISA, and ALP assays proved osmolyte-type dependent effects of hyperosmolarity on chondrogenesis, hypertrophy, and angiogenesis. At same osmolarity level, PEG had least cytotoxic/cytostatic effect and most prohibitive effects on angiogenesis. As expected, all hyperosmolar conditions led to enhanced chondrogenesis with slightly varying degrees. PEG and sorbitol had higher chondro-promotive and hypertrophy-suppressive effects compared to NaCl, while NaCl had exacerbated hypertrophy. We observed that TonEBP was involved in osmoadaptation of all treatments in varying degrees. Of importance, we highlighted differential effects of hyperosmolarity obtained by different osmolytes on the efficacy of chondrogenesis and more remarkably on the induction/suppression of cartilage pathologic markers. Our study underlies the need for a more vigilant exploitation of physicobiochemical inducers in order to maximize chondrogenesis while restraining unwanted hypertrophy and angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adams, M. A., & Roughley, P. J. (2006). What is intervertebral disc degeneration, and what causes it? Spine, 31(18), 2151–2161.

    Article  Google Scholar 

  2. Hunter, D. J., Schofield, D., & Callander, E. (2014). The individual and socioeconomic impact of osteoarthritis. Nature reviews Rheumatology, 10(7), 437–441.

    Article  Google Scholar 

  3. Musumeci, G., Szychlinska, M. A., & Mobasheri, A. (2015). Age-related degeneration of articular cartilage in the pathogenesis of osteoarthritis: molecular markers of senescent chondrocytes. Histology and Histopathology, 30(1), 1–12.

    CAS  Google Scholar 

  4. Camp, C. L., Stuart, M. J., & Krych, A. J. (2014). Current concepts of articular cartilage restoration techniques in the knee. Sports Health: A Multidisciplinary Approach., 6(3), 265–273.

    Article  Google Scholar 

  5. Shafiee, A., Kabiri, M., Ahmadbeigi, N., Yazdani, S. O., Mojtahed, M., Amanpour, S., et al. (2011). Nasal septum-derived multipotent progenitors: a potent source for stem cell-based regenerative medicine. Stem cells and development., 20(12), 2077–2091.

    Article  CAS  Google Scholar 

  6. Mafi, R., Hindocha, S., Mafi, P., Griffin, M., & Khan, W. S. (2011). Sources of adult mesenchymal stem cells applicable for musculoskeletal applications—a systematic review of the literature. The open orthopaedics journal., 5(Suppl), 2242–2248.

    Google Scholar 

  7. Shafiee A., Kabiri M., Langroudi L., Soleimani M., Ai J.(2015) Evaluation and comparison of the in vitro characteristics and chondrogenic capacity of four adult stem/progenitor cells for cartilage cell-based repair. Journal of biomedical materials research. Part A.

    Google Scholar 

  8. Osiecki, M. J., Michl, T. D., Kul Babur, B., Kabiri, M., Atkinson, K., Lott, W. B., et al. (2015). Packed bed bioreactor for the isolation and expansion of placental-derived mesenchymal stromal cells. PLoS One, 10(12), e0144941.

    Article  Google Scholar 

  9. Somuncu, Ö. S., Taşlı, P. N., Şişli, H. B., Somuncu, S., & Şahin, F. (2015). Characterization and differentiation of stem cells isolated from human newborn foreskin tissue. Applied Biochemistry and Biotechnology, 177(5), 1040–1054.

    Article  CAS  Google Scholar 

  10. Lu, T., Xiong, H., Wang, K., Wang, S., Ma, Y., & Guan, W. (2014). Isolation and characterization of adipose-derived mesenchymal stem cells (adscs) from cattle. Applied Biochemistry and Biotechnology, 174(2), 719–728.

    Article  CAS  Google Scholar 

  11. Fraser, J. K., Wulur, I., Alfonso, Z., & Hedrick, M. H. (2006). Fat tissue: an underappreciated source of stem cells for biotechnology. Trends in biotechnology., 24(4), 150–154.

    Article  CAS  Google Scholar 

  12. Urban, J. P. (1994). The chondrocyte: a cell under pressure. British journal of rheumatology., 33(10), 901–908.

    Article  CAS  Google Scholar 

  13. Bertram, K. L., & Krawetz, R. J. (2012). Osmolarity regulates chondrogenic differentiation potential of synovial fluid derived mesenchymal progenitor cells. Biochemical and biophysical research communications., 422(3), 455–461.

    Article  CAS  Google Scholar 

  14. Caron M. M., van der Windt A. E., Emans P. J., van Rhijn L. W., Jahr H., Welting T. J.(2013) Osmolarity determines the in vitro chondrogenic differentiation capacity of progenitor cells via nuclear factor of activated t-cells 5. Bone 53(1), 94–102.

  15. Chao, P. H., West, A. C., & Hung, C. T. (2006). Chondrocyte intracellular calcium, cytoskeletal organization, and gene expression responses to dynamic osmotic loading. American journal of physiology. Cell physiology., 291(4), C718–C725.

    Article  CAS  Google Scholar 

  16. Tew, S. R., Peffers, M. J., McKay, T. R., Lowe, E. T., Khan, W. S., Hardingham, T. E., et al. (2009). Hyperosmolarity regulates sox9 mrna posttranscriptionally in human articular chondrocytes. American Journal of Physiology-Cell Physiology, 297(4), C898–C906.

    Article  CAS  Google Scholar 

  17. Wyss, C., & Bachmann, G. (1976). Influence of amino acids, mammalian serum, and osmotic pressure on the proliferation of drosophila cell lines. Journal of insect physiology., 22(12), 1581–1586.

    Article  CAS  Google Scholar 

  18. Dodel, M., Nejad, N. H., Bahrami, S. H., Soleimani, M., Amirabad, L. M., Hanaee-Ahvaz, H., et al. (2017). Electrical stimulation of somatic human stem cells mediated by composite containing conductive nanofibers for ligament regeneration. Biologicals, 4699–4107.

  19. Zamani, Y., Rabiee, M., Shokrgozar, M. A., Bonakdar, S., & Tahriri, M. (2013). Response of human mesenchymal stem cells to patterned and randomly oriented poly (vinyl alcohol) nano-fibrous scaffolds surface-modified with arg-gly-asp (rgd) ligand. Applied Biochemistry and Biotechnology, 171(6), 1513–1524.

    Article  CAS  Google Scholar 

  20. Pakfar A., Irani S., Hanaee-Ahvaz H.(2016) Expressions of pathologic markers in prp based chondrogenic differentiation of human adipose derived stem cells. Tissue and Cell.

    Google Scholar 

  21. Kabiri, M., Oraee-Yazdani, S., Dodel, M., Hanaee-Ahvaz, H., Soudi, S., Seyedjafari, E., et al. (2015). Cytocompatibility of a conductive nanofibrous carbon nanotube/poly (l-lactic acid) composite scaffold intended for nerve tissue engineering. EXCLI journal., 14851.

  22. Babur, B. K., Kabiri, M., Klein, T. J., Lott, W. B., & Doran, M. R. (2015). The rapid manufacture of uniform composite multicellular-biomaterial micropellets, their assembly into macroscopic organized tissues, and potential applications in cartilage tissue engineering. PLoS One, 10(5), e0122250.

    Article  Google Scholar 

  23. www.eadepardazan.com.

  24. Giatromanolaki, A., Sivridis, E., Athanassou, N., Zois, E., Thorpe, P. E., Brekken, R. A., et al. (2001). The angiogenic pathway ‘vascular endothelial growth factor/flk-1 (kdr)-receptor’in rheumatoid arthritis and osteoarthritis. The Journal of pathology., 194(1), 101–108.

    Article  CAS  Google Scholar 

  25. Patil, A., Sable, R., & Kothari, R. (2012). Occurrence, biochemical profile of vascular endothelial growth factor (vegf) isoforms and their functions in endochondral ossification. Journal of cellular physiology., 227(4), 1298–1308.

    Article  CAS  Google Scholar 

  26. van der Windt, A. E., Haak, E., Das, R. H., Kops, N., Welting, T. J., Caron, M. M., et al. (2010). Physiological tonicity improves human chondrogenic marker expression through nuclear factor of activated t-cells 5 in vitro. Arthritis research & therapy., 12(3), 1.

    Google Scholar 

  27. Wuertz, K., Godburn, K., Neidlinger-Wilke, C., Urban, J., & Iatridis, J. C. (2008). Behavior of mesenchymal stem cells in the chemical microenvironment of the intervertebral disc. Spine, 33(17), 1843–1849.

    Article  Google Scholar 

  28. Mavrogonatou, E., & Kletsas, D. (2012). Differential response of nucleus pulposus intervertebral disc cells to high salt, sorbitol, and urea. Journal of cellular physiology., 227(3), 1179–1187.

    Article  CAS  Google Scholar 

  29. Parnaud, G., Corpet, D. E., & Gamet-Payrastre, L. (2001). Cytostatic effect of polyethylene glycol on human colonic adenocarcinoma cells. International journal of cancer., 92(1), 63–69.

    Article  CAS  Google Scholar 

  30. Mobasheri, A. (1999). Regulation of na+, k+-atpase density by the extracellular ionic and osmotic environment in bovine articular chondrocytes. Physiological Research, 48(6), 509–512.

    CAS  Google Scholar 

  31. Hoffmann, E. K., & Dunham, P. B. (1995). Membrane mechanisms and intracellular signalling in cell volume regulation. International review of cytology., 161173–161262.

  32. Kuper, C., Beck, F.-X., & Neuhofer, W. (2007). Osmoadaptation of mammalian cells-an orchestrated network of protective genes. Current Genomics, 8(4), 209–218.

    Article  Google Scholar 

  33. Racz, B., Reglodi, D., Fodor, B., Gasz, B., Lubics, A., Gallyas, F., et al. (2007). Hyperosmotic stress-induced apoptotic signaling pathways in chondrocytes. Bone, 40(6), 1536–1543.

    Article  CAS  Google Scholar 

  34. Skaalure, S. C., Radhakrishnan, S. M., & Bryant, S. J. (2015). Physiological osmolarities do not enhance long-term tissue synthesis in chondrocyte-laden degradable poly (ethylene glycol) hydrogels. Journal of Biomedical Materials Research Part A., 103(6), 2186–2192.

    Article  CAS  Google Scholar 

  35. van Dijk, B., Potier, E., & Ito, K. (2011). Culturing bovine nucleus pulposus explants by balancing medium osmolarity. Tissue engineering. Part C, Methods., 17(11), 1089–1096.

    Article  Google Scholar 

  36. Aramburu, J., Drews-Elger, K., Estrada-Gelonch, A., Minguillon, J., Morancho, B., Santiago, V., et al. (2006). Regulation of the hypertonic stress response and other cellular functions by the rel-like transcription factor nfat5. Biochemical Pharmacology, 72(11), 1597–1604.

    Article  CAS  Google Scholar 

  37. Woo, S. K., Lee, S. D., & Kwon, H. M. (2002). Tonebp transcriptional activator in the cellular response to increased osmolality. Pflugers Archiv : European journal of physiology., 444(5), 579–585.

    Article  CAS  Google Scholar 

  38. Wuertz, K., Urban, J. P., Klasen, J., Ignatius, A., Wilke, H. J., Claes, L., et al. (2007). Influence of extracellular osmolarity and mechanical stimulation on gene expression of intervertebral disc cells. Journal of orthopaedic research : official publication of the Orthopaedic Research Society., 25(11), 1513–1522.

    Article  CAS  Google Scholar 

  39. Boyd, L. M., Richardson, W. J., Chen, J., Kraus, V. B., Tewari, A., & Setton, L. A. (2005). Osmolarity regulates gene expression in intervertebral disc cells determined by gene array and real-time quantitative rt-pcr. Annals of biomedical engineering., 33(8), 1071–1077.

    Article  Google Scholar 

  40. Ishihara, H., Warensjo, K., Roberts, S., & Urban, J. P. (1997). Proteoglycan synthesis in the intervertebral disk nucleus: the role of extracellular osmolality. The American journal of physiology., 272(5 Pt 1), C1499–C1506.

    Article  CAS  Google Scholar 

  41. Woo, S., Lee, S., & Kwon, M. H. (2002). Tonebp transcriptional activator in the cellular response to increased osmolality. Pflügers Archiv European Journal of Physiology, 444(5), 579–585.

    Article  CAS  Google Scholar 

  42. Zhang, Z., Ferraris, J. D., Brooks, H. L., Brisc, I., & Burg, M. B. (2003). Expression of osmotic stress-related genes in tissues of normal and hyposmotic rats. American Journal of Physiology-Renal Physiology., 285(4), F688–F693.

    Article  CAS  Google Scholar 

  43. Grunewald, R. W., Ehrhard, M., Fiedler, G. M., Schüttert, J. B., Oppermann, M., & Müller, G. A. (2001). Evidence for a sorbitol transport system in immortalized human renal interstitial cells. Nephron Experimental Nephrology, 9(6), 405–411.

    Article  CAS  Google Scholar 

  44. Cai, Q., Ferraris, J. D., & Burg, M. B. (2005). High nacl increases tonebp/orebp mrna and protein by stabilizing its mrna. American Journal of Physiology-Renal Physiology., 289(4), F803–F807.

    Article  CAS  Google Scholar 

  45. Li, D.-Q., Chen, Z., Song, X. J., Luo, L., & Pflugfelder, S. C. (2004). Stimulation of matrix metalloproteinases by hyperosmolarity via a jnk pathway in human corneal epithelial cells. Investigative ophthalmology & visual science., 45(12), 4302–4311.

    Article  Google Scholar 

  46. Bonnet, C., & Walsh, D. (2005). Osteoarthritis, angiogenesis and inflammation. Rheumatology, 44(1), 7–16.

    Article  CAS  Google Scholar 

  47. Vu, T. H., Shipley, J. M., Bergers, G., Berger, J. E., Helms, J. A., Hanahan, D., et al. (1998). Mmp-9/gelatinase b is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell, 93(3), 411–422.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been partly funded by the University of Tehran and partly by the Stem Cell Technology Research Center and Iranian Council for Stem Cell Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboubeh Kabiri.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Supplementary Figure 1

Characterization of stemness properties of the MSC isolated from adipose tissue. A) MSC were differentiated into adipocytes. Adipose vesicles can be observed as red droplets stained by Oil Red O. B) MSC were differentiated into Osteogenic lineage. Calcium crystals are stained in red using Alizarin Red staining. C) As expected the isolated cells are negative for hematopoietic stem cell markers, i.e., CD34 and CD45, while showing high expression of CD90 and CD73. Scale bar: 200 μm. (GIF 1.28 mb)

High resolution image (TIFF 4.32 mb)

Supplementary Figure 2

Quantification of Collagen II Staining intensity with Image Pro Plus software. A representative image analyzed with the software. B) The same image after color selection and mask application. The arrow shows sensitivity of color selection with unspecific staining being excluded. (GIF 337 kb)

High resolution image (TIFF 1.94 mb)

Supplementary Figure 3

A) Representative Col-X stained images analyzed with the Image Pro Plus software. B) The same image after color selection and applying mask. (GIF 195 kb)

High resolution image (TIFF 1.73 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadyan, S., Kabiri, M., Hanaee-Ahvaz, H. et al. Osmolyte Type and the Osmolarity Level Affect Chondrogenesis of Mesenchymal Stem Cells. Appl Biochem Biotechnol 185, 507–523 (2018). https://doi.org/10.1007/s12010-017-2647-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2647-5

Keywords

Navigation