Skip to main content

Advertisement

Log in

A Comparative Study of Receptor-Targeted Magnetosome and HSA-Coated Iron Oxide Nanoparticles as MRI Contrast-Enhancing Agent in Animal Cancer Model

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Magnetosomes are specialized organelles arranged in intracellular chains in magnetotactic bacteria. The superparamagnetic property of these magnetite crystals provides potential applications as contrast-enhancing agents for magnetic resonance imaging. In this study, we compared two different nanoparticles that are bacterial magnetosome and HSA-coated iron oxide nanoparticles for targeting breast cancer. Both magnetosomes and HSA-coated iron oxide nanoparticles were chemically conjugated to fluorescent-labeled anti-EGFR antibodies. Antibody-conjugated nanoparticles were able to bind the MDA-MB-231 cell line, as assessed by flow cytometry. To compare the cytotoxic effect of nanoparticles, MTT assay was used, and according to the results, HSA-coated iron oxide nanoparticles were less cytotoxic to breast cancer cells than magnetosomes. Magnetosomes were bound with higher rate to breast cancer cells than HSA-coated iron oxide nanoparticles. While 250 μg/ml of magnetosomes was bound 92 ± 0.2%, 250 μg/ml of HSA-coated iron oxide nanoparticles was bound with a rate of 65 ± 5%. In vivo efficiencies of these nanoparticles on breast cancer generated in nude mice were assessed by MRI imaging. Anti-EGFR-modified nanoparticles provide higher resolution images than unmodified nanoparticles. Also, magnetosome with anti-EGFR produced darker image of the tumor tissue in T2-weighted MRI than HSA-coated iron oxide nanoparticles with anti-EGFR. In vivo MR imaging in a mouse breast cancer model shows effective intratumoral distribution of both nanoparticles in the tumor tissue. However, magnetosome demonstrated higher distribution than HSA-coated iron oxide nanoparticles according to fluorescence microscopy evaluation. According to the results of in vitro and in vivo study results, magnetosomes are promising for targeting and therapy applications of the breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BM:

Bacterial magnetosome

HSA:

Human serum albumin

SPIONs:

Superparamagnetic iron oxide nanoparticles

HSA-SPIONs:

Human serum albumin-coated iron oxide nanoparticles

MRI:

Magnetic resonance imaging

Anti-EGFR:

Anti-epidermal growth factor receptor

References

  1. Ondrusek, N., Warner, E., & Goel, V. (1999). Development of a knowledge scale about breast cancer and heredity (BCHK). Breast Cancer Research and Treatment, 53, 69–75.

    Article  CAS  Google Scholar 

  2. What is Breast Cancer? 2004. Available from: http://www.cancer.ca.

  3. Fernandez-Fernandez, A., Manchanda, R., & McGoron, A. J. (2011). Theranostic applications of nanomaterials in cancer: Drug delivery, image-guided therapy, and multifunctional platforms. Applied Biochemistry and Biotechnology, 165, 1628–1651.

    Article  CAS  Google Scholar 

  4. Geva, T. (2006). Magnetic resonance imaging: Historical perspective. Journal of Cardiovascular Magnetic Resonance, 8, 573–580.

    Article  Google Scholar 

  5. Stillman, M. J. (1977). Womens health beliefs about breast-cancer and breast self-examination. Nursing Research, 26, 121–127.

    Article  CAS  Google Scholar 

  6. Boyd, N. F., Guo, H., Martin, L. J., Sun, L. M., Stone, J., Fishell, E., Jong, R. A., Hislop, G., Chiarelli, A., Minkin, S., & Yaffe, M. J. (2007). Mammographic density and the risk and detection of breast cancer. New England Journal of Medicine, 356, 227–236.

    Article  CAS  Google Scholar 

  7. Smith, R. A., Cokkinides, V., von Eschenbach, A. C., Levin, B., Cohen, C., Runowicz, C. D., Sener, S., Saslow, D., & Eyre, H. J. (2002). American Cancer Society guidelines for the early detection of cancer. CA: A Cancer Journal for Clinicians, 52, 8–22.

    Google Scholar 

  8. Kuhl, C. (2007). The current status of breast MR imaging part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice 1. Radiology, 244, 356–378.

    Article  Google Scholar 

  9. Kupfer, M. E., & Ogle, B. M. (2015). Advanced imaging approaches for regenerative medicine: Emerging technologies for monitoring stem cell fate in vitro and in vivo. Biotechnology Journal, 10, 1515–1528.

    Article  CAS  Google Scholar 

  10. Adam, G., Dammer, M., Bohndorf, K., Christoph, R., Fenke, F., & Günther, R. (1991). Rheumatoid arthritis of the knee: Value of gadopentetate dimeglumine-enhanced MR imaging. AJR. American Journal of Roentgenology, 156, 125–129.

    Article  CAS  Google Scholar 

  11. Port, M., Idee, J. M., Medina, C., Robic, C., Sabatou, M., & Corot, C. (2008). Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: A critical review. Biometals, 21, 469–490.

    Article  CAS  Google Scholar 

  12. Felton, C., Karmakar, A., Gartia, Y., Ramidi, P., Biris, A. S., & Ghosh, A. (2014). Magnetic nanoparticles as contrast agents in biomedical imaging: Recent advances in iron- and manganese-based magnetic nanoparticles. Drug Metabolism Reviews, 46, 142–154.

    Article  CAS  Google Scholar 

  13. Sun, C., Sze, R., & Zhang, M. (2006). Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. Journal of Biomedical Materials Research Part A, 78, 550–557.

    Article  Google Scholar 

  14. Chakraborty, M., Jain, S., & Rani, V. (2011). Nanotechnology: Emerging tool for diagnostics and therapeutics. Applied Biochemistry and Biotechnology, 165, 1178–1187.

    Article  CAS  Google Scholar 

  15. LaVan, D. A., McGuire, T., & Langer, R. (2003). Small-scale systems for in vivo drug delivery. Nature Biotechnology, 21, 1184–1191.

    Article  CAS  Google Scholar 

  16. Zhang, K., Yuan, K., Wu, H. Y., Li, Q., Wang, Y. L., Chen, S. H., Zhang, L. L., Gu, H., & Fu, R. Z. (2012). Identification of potential markers related to neoadjuvant chemotherapy sensitivity of breast cancer by SELDI-TOF MS. Applied Biochemistry and Biotechnology, 166, 753–763.

    Article  CAS  Google Scholar 

  17. Majidi, S., Sehrig, F. Z., Farkhani, S. M., Goloujeh, M. S., & Akbarzadeh, A. (2016). Current methods for synthesis of magnetic nanoparticles. Artificial Cell Nanomedicine and Biotechnology, 44, 722–734.

    Article  CAS  Google Scholar 

  18. Gubin, S. P., Koksharov, Y. A., Khomutov, G. B., & Yurkov, G. Y. (2005). Magnetic nanoparticles: Preparation methods, structure and properties. Usp Khim+, 74, 539–574.

    Google Scholar 

  19. Reetz, M. T., Helbig, W., & Quaiser, S. A. (1996). In A. Fürstner (Ed.), Active metals: Preparation, characterization, applications. Weinheim: Wiley-VCH Verlag GmbH.

    Google Scholar 

  20. Dai, Z. F., Meiser, F., & Mohwald, H. (2005). Nanoengineering of iron oxide and iron oxide/silica hollow spheres by sequential layering combined with a sol-gel process. Journal of Colloid and Interface Science, 288, 298–300.

    Article  CAS  Google Scholar 

  21. Patra, S., Mukherjee, S., Barui, A. K., Ganguly, A., Sreedhar, B., & Patra, C. R. (2015). Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Materials Science and Engineering C: Materials for Biological Applications, 53, 298–309.

    Article  CAS  Google Scholar 

  22. Blakemore, R. (1975). Magnetotactic bacteria. Science, 190, 377–379.

    Article  CAS  Google Scholar 

  23. Xie, J., Chen, K., & Chen, X. (2009). Production, modification and bio-applications of magnetic nanoparticles gestated by magnetotactic bacteria. Nano Research, 2, 261–278.

    Article  CAS  Google Scholar 

  24. Bazylinski, D. A. (1996). Controlled biomineralization of magnetic minerals by magnetotactic bacteria. Chemical Geology, 132, 191–198.

    Article  CAS  Google Scholar 

  25. Balkwill, D., Maratea, D., & Blakemore, R. (1980). Ultrastructure of a magnetotactic spirillum. Journal of Bacteriology, 141, 1399–1408.

    CAS  Google Scholar 

  26. Wahyudi, A. T., Takeyama, H., & Matsunaga, T. (2001). Isolation of Magnetospirillum magneticum AMB-1 mutants defective in bacterial magnetic particle synthesis by transposon mutagenesis. Applied Biochemistry and Biotechnology, 91-3, 147–154.

    Article  Google Scholar 

  27. Lower, B. H., & Bazylinski, D. A. (2013). The bacterial Magnetosome: A unique prokaryotic organelle. Journal of Molecular Microbiology and Biotechnology, 23, 63–80.

    Article  CAS  Google Scholar 

  28. Bazylinski, D. A., & Frankel, R. B. (2004). Magnetosome formation in prokaryotes. Nature Reviews. Microbiology, 2, 217–230.

    Article  CAS  Google Scholar 

  29. Sun, J. B., Zhao, F., Tang, T., Jiang, W., Tian, J. S., Li, Y., & Li, J. L. (2008). High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air. Applied Microbiology and Biotechnology, 79, 389–397.

    Article  CAS  Google Scholar 

  30. Grunberg, K., Muller, E. C., Otto, A., Reszka, R., Linder, D., Kube, M., Reinhardt, R., & Schuler, D. (2004). Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Applied and Environmental Microbiology, 70, 1040–1050.

    Article  Google Scholar 

  31. Schuler, D. (2004). Molecular analysis of a subcellular compartment: The magnetosome membrane in Magnetospirillum gryphiswaldense. Archives of Microbiology, 181, 1–7.

    Article  Google Scholar 

  32. Arakaki, A., Webb, J., & Matsunaga, T. (2003). A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. The Journal of Biological Chemistry, 278, 8745–8750.

    Article  CAS  Google Scholar 

  33. Sun, J., Li, Y., Liang, X.-J., & Wang, P. C. (2011). Bacterial magnetosome: A novel biogenetic magnetic targeted drug carrier with potential multifunctions. Journal of Nanomaterials, 2011, 9.

    Google Scholar 

  34. Nitin, N., LaConte, L. E. W., Zurkiya, O., Hu, X., & Bao, G. (2004). Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. Journal of Biological Inorganic Chemistry, 9, 706–712.

    Article  CAS  Google Scholar 

  35. Yu, J., Lee, C.-W., Im, S.-S., & Lee, J.-S. (2003). Structure and magnetic properties of SiO2 coated Fe2O3 nanoparticles synthesized by chemical vapor condensation process. Reviews on Advanced Materials Science, 4, 55–59.

    Article  CAS  Google Scholar 

  36. Xia, D. L., Chen, Y. P., Chen, C., Wang, Y. F., Li, X. D., He, H., & Gu, H. Y. (2015). Comparative study of biosafety, DNA, and chromosome damage of different-materials-modified Fe3O4 in rats. Applied Biochemistry and Biotechnology, 177, 1069–1082.

    Article  CAS  Google Scholar 

  37. Henoumont, C., Elst, L. V., Laurent, S., & Muller, R. N. (2009). Study of non-covalent interactions between MRI contrast agents and human serum albumin by NMR diffusometry. Journal of Biological Inorganic Chemistry, 14, 683–691.

    Article  CAS  Google Scholar 

  38. Sugio, S., Kashima, A., Mochizuki, S., Noda, M., & Kobayashi, K. (1999). Crystal structure of human serum albumin at 2.5 Å resolution. Protein Engineering, 12, 439–446.

    Article  CAS  Google Scholar 

  39. Ruuls, S. R., Lammerts van Bueren, J. J., van de Winkel, J. G., & Parren, P. W. (2008). Novel human antibody therapeutics: The age of the Umabs. Biotechnology Journal, 3, 1157–1171.

    Article  CAS  Google Scholar 

  40. Zhang, Y., Zhang, X. J., Jiang, W., Li, Y., & Li, J. L. (2011). Semicontinuous culture of Magnetospirillum gryphiswaldense MSR-1 cells in an Autofermentor by nutrient-balanced and isosmotic feeding strategies. Applied and Environmental Microbiology, 77, 5851–5856.

    Article  CAS  Google Scholar 

  41. Sun, J. B., Duan, J. H., Dai, S. L., Ren, J., Guo, L., Jiang, W., & Li, Y. (2008). Preparation and anti-tumor efficiency evaluation of doxorubicin-loaded bacterial magnetosomes: Magnetic nanoparticles as drug carriers isolated from Magnetospirillum gryphiswaldense. Biotechnology and Bioengineering, 101, 1313–1320.

    Article  CAS  Google Scholar 

  42. Kavaz, D., Odabaş, S., Güven, E., Demirbilek, M., & Denkbaş, E. B. (2010). Bleomycin loaded magnetic chitosan nanoparticles as multifunctional nanocarriers. Journal of Bioactive and Compatible Polymers, 25, 305–318.

    Article  CAS  Google Scholar 

  43. Lin, W., Coombes, A., Davies, M., Davis, S., & Illum, L. (1993). Preparation of sub-100 nm human serum albumin nanospheres using a pH-coacervation method. Journal of Drug Targeting, 1, 237–243.

    Article  CAS  Google Scholar 

  44. Barral, J. K., Gudmundson, E., Stikov, N., Etezadi-Amoli, M., Stoica, P., & Nishimura, D. G. (2010). A robust methodology for in vivo T1 mapping. Magnetic Resonance in Medicine, 64, 1057–1067.

    Article  Google Scholar 

  45. Zhang, Y., Kohler, N., & Zhang, M. Q. (2002). Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 23, 1553–1561.

    Article  CAS  Google Scholar 

  46. Chi, K. R. (2009). Microscopy: Ever-increasing resolution. Nature, 462, 675–678.

    Article  CAS  Google Scholar 

  47. Matsuda, Y., Schlange, T., Oakeley, E. J., Boulay, A., & Hynes, N. E. (2009). WNT signaling enhances breast cancer cell motility and blockade of the WNT pathway by sFRP1 suppresses MDA-MB-231 xenograft growth. Breast Cancer Research, 11, R32.

    Article  Google Scholar 

  48. Xu, J., Hu, J., Liu, L., Li, L., Wang, X., Zhang, H., Jiang, W., Tian, J., Li, Y., & Li, J. (2014). Surface expression of protein a on magnetosomes and capture of pathogenic bacteria by magnetosome/antibody complexes. Frontiers in Microbiology, 5, 136.

    Article  Google Scholar 

  49. Xie, J., Wang, J., Niu, G., Huang, J., Chen, K., Li, X., & Chen, X. (2010). Human serum albumin coated iron oxide nanoparticles for efficient cell labeling. Chemical Communications, 46, 433–435.

    Article  CAS  Google Scholar 

  50. Xiang, L., Wei, J., Jianbo, S., Guili, W., Feng, G., & Ying, L. (2007). Purified and sterilized magnetosomes from Magnetospirillum gryphiswaldense MSR-1 were not toxic to mouse fibroblasts in vitro. Letters in Applied Microbiology, 45, 75–81.

    Article  CAS  Google Scholar 

  51. Wartlick, H., Michaelis, K., Balthasar, S., Strebhardt, K., Kreuter, J., & Langer, K. (2004). Highly specific HER2-mediated cellular uptake of antibody-modified nanoparticles in tumour cells. Journal of Drug Targeting, 12, 461–471.

    Article  CAS  Google Scholar 

  52. Tkachenko, A. G., Xie, H., Liu, Y. L., Coleman, D., Ryan, J., Glomm, W. R., Shipton, M. K., Franzen, S., & Feldheim, D. L. (2004). Cellular trajectories of peptide-modified gold particle complexes: Comparison of nuclear localization signals and peptide transduction domains. Bioconjugate Chemistry, 15, 482–490.

    Article  CAS  Google Scholar 

  53. Alphandery, E. (2014). Applications of magnetosomes synthesized by magnetotactic bacteria in medicine. Frontiers in Bioengineering and Biotechnology, 2, 5.

    Google Scholar 

  54. Sun, J. B., Tang, T., Duan, J. H., Xu, P. X., Wang, Z. L., Zhang, Y. D., Wu, L. Y., & Li, Y. (2010). Biocompatibility of bacterial magnetosomes: Acute toxicity, immunotoxicity and cytotoxicity. Nanotoxicology, 4, 271–283.

    Article  CAS  Google Scholar 

  55. Alphandery, E., Faure, S., Seksek, O., Guyot, F., & Chebbi, I. (2011). Chains of Magnetosomes Extracted from AMB-1 Magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano, 5, 6279–6296.

    Article  CAS  Google Scholar 

  56. Ankamwar, B., Lai, T. C., Huang, J. H., Liu, R. S., Hsiao, M., Chen, C. H., & Hwu, Y. K. (2010). Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology, 21, 75102.

    Article  CAS  Google Scholar 

  57. Han, L., Li, S., Yang, Y., Zhao, F., Huang, J., & Chang, J. (2007). Comparison of magnetite nanocrystal formed by biomineralization and chemosynthesis. Journal of Magnetism and Magnetic Materials, 313, 236–242.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Hacettepe University. Project number is 014BİYB604002.

The animal study protocol was approved by Animal Research Ethics Committee of Kobay A.Ş. Protocol number 106. 04.03.2014. There is no conflict of interest between authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emir B. Denkbas.

Ethics declarations

All methods used in this study were approved by Kobay Laboratory of Experimental Animals Ethics Committee (No:106, 2014).

Additional information

Highlights

Biosynthesis and extraction of magnetosome

Synthesis of superparamagnetic iron oxide nanoparticles

Design and development of nanoparticle for targeting to cancer cells

Generated of breast cancer in nude mice

Electronic Supplementary Material

ESM 1

(DOCX 192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdal, E., Demirbilek, M., Yeh, Y. et al. A Comparative Study of Receptor-Targeted Magnetosome and HSA-Coated Iron Oxide Nanoparticles as MRI Contrast-Enhancing Agent in Animal Cancer Model. Appl Biochem Biotechnol 185, 91–113 (2018). https://doi.org/10.1007/s12010-017-2642-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2642-x

Keywords

Navigation