Skip to main content
Log in

Visualizing Soluble Protein Mutants by Using Monomeric Red Fluorescent Protein as a Reporter for Directed Evolution

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Directed evolution-based protein engineering usually generates large library contained insoluble mutants because of structural disturbance by mutation. To reduce the workload and costs, it is crucial to identify and eliminate those insoluble variants prior to dedicated analysis. Here, we demonstrate a method to visualize soluble protein mutants by using monomeric red fluorescent protein (mRFP) as a fusion tag. A plasmid was devised to express nicotinic acid mononucleotide adenylyltransferase (NadD) fused with a GGGS-linked mRFP tag at the C-terminus. The plasmid was subjected to site saturation mutagenesis within the nadD gene, used to transform Escherichia coli DH10B competent cells, leading to colonies with different red intensities. It was found that the fluorescence intensity of the cell culture correlated positively with the content of NadD-mRFP mutant in the supernatant. Mutation at position 132 led to a library of which most colonies lost the red phenotype, indicating that the position had a key role for proper protein folding. Similarly, mRFP enabled identification of soluble mutants of other enzymes including 1-deoxy-D-xylulose-5-phosphate reductoisomerase and phosphite dehydrogenase. These data suggested that mRFP can serve as a fusion reporter for visualizing soluble protein mutants to facilitate more efficient library screening in directed evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dougherty, M. J., & Arnold, F. H. (2009). Directed evolution: new parts and optimized function. Current Opinion in Biotechnology, 20(4), 486–491.

    Article  CAS  Google Scholar 

  2. Waldo, G. S. (2003). Genetic screens and directed evolution for protein solubility. Current Opinion in Chemical Biology, 7(1), 33–38.

    Article  CAS  Google Scholar 

  3. Zhang, J., Campbell, R. E., Ting, A. Y., & Tsien, R. Y. (2002). Creating new fluorescent probes for cell biology. Nature Reviews. Molecular Cell Biology, 3(12), 906–918.

    Article  CAS  Google Scholar 

  4. Waldo, G. S., Standish, B. M., Berendzen, J., & Terwilliger, T. C. (1999). Rapid protein-folding assay using green fluorescent protein. Nature Biotechnology, 17(7), 691–695.

    Article  CAS  Google Scholar 

  5. Listwan, P., Terwilliger, T. C., & Waldo, G. S. (2009). Automated, high-throughput platform for protein solubility screening using a split-GFP system. Journal of Structural and Functional Genomics, 10(1), 47–55.

    Article  CAS  Google Scholar 

  6. Pedelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C., & Waldo, G. S. (2006). Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnology, 24(1), 79–88.

    Article  CAS  Google Scholar 

  7. Heddle, C., & Mazaleyrat, S. L. (2007). Development of a screening platform for directed evolution using the reef coral fluorescent protein ZsGreen as a solubility reporter. Protein Engineering, Design & Selection, 20(7), 327–337.

    Article  CAS  Google Scholar 

  8. Shaner, N. C., Steinbach, P. A., & Tsien, R. Y. (2005). A guide to choosing fluorescent proteins. Nature Methods, 2(12), 905–909.

    Article  CAS  Google Scholar 

  9. Zhong, C., Wei, P., & Zhang, Y.-H. P. (2017). Enhancing functional expression of codon-optimized heterologous enzymes in Escherichia coli BL21(DE3) by selective introduction of synonymous rare codons. Biotechonology and Bioengineering, 114(5), 1054–1064.

    Article  CAS  Google Scholar 

  10. Chen, P., Feng, X., Hu, R., Sun, J., Du, W., & Liu, B. F. (2010). Hydrodynamic gating valve for microfluidic fluorescence-activated cell sorting. Analytica Chimica Acta, 663, 1–6.

    Article  CAS  Google Scholar 

  11. Cheong, D. E., Ko, K. C., Han, Y., Jeon, H. G., Sung, B. H., Kim, G.-J., Choi, J. H., & Song, J. J. (2015). Enhancing functional expression of heterologous proteins through random substitution of genetic codes in the 5′-coding region. Biotechonology and Bioengineering, 112(4), 822–826.

    Article  CAS  Google Scholar 

  12. Lu, P., & Feng, M. G. (2008). Bifunctional enhancement of a beta-glucanase-xylanase fusion enzyme by optimization of peptide linkers. Applied Microbiology and Biotechnology, 79(4), 579–587.

    Article  CAS  Google Scholar 

  13. Campbell, R. E., Tour, O., Palmer, A. E., Steinbach, P. A., Baird, G. S., Zacharias, D. A., & Tsien, R. Y. (2002). A monomeric red fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 7877–7882.

    Article  CAS  Google Scholar 

  14. Mehl, R. A., Kinsland, C., & Begley, T. P. (2000). Identification of the Escherichia coli nicotinic acid mononucleotide adenylyltransferase gene. Journal of Bacteriology, 182(15), 4372–4374.

    Article  CAS  Google Scholar 

  15. Wang, L., Ji, D., Liu, Y., Wang, Q., Wang, X., Zhou, Y. J., Zhang, Y., Liu, W., & Zhao, Z. K. (2017). Synthetic cofactor-linked metabolic circuits for selective energy transfer. ACS Catalysis, 7(3), 1977–1983.

    Article  CAS  Google Scholar 

  16. Wang, J., Tan, H., & Zhao, Z. K. (2007). Over-expression, purification, and characterization of recombinant NAD-malic enzyme from Escherichia coli K12. Protein Expression and Purification, 53(1), 97–103.

    Article  CAS  Google Scholar 

  17. van den Ent, F., & Lowe, J. (2006). RF cloning: a restriction-free method for inserting target genes into plasmids. Journal of Biochemical and Biophysical Methods, 67(1), 67–74.

    Article  Google Scholar 

  18. Wang, J., Zhang, S., Tan, H., & Zhao, Z. (2007). PCR-based strategy for construction of multi-site-saturation mutagenic expression library. Journal of Microbiological Methods, 71(3), 225–230.

    Article  CAS  Google Scholar 

  19. Wang, X., Zhou, Y. J., Wang, L., Liu, W., Liu, Y., Peng, C., & Zhao, Z. K. (2017). Engineering Escherichia coli nicotinic acid mononucleotide adenylyltransferase for fully active amidated NAD biosynthesis. Applied and Environmental Microbiology, 83(13), e00692–e00617.

    Article  CAS  Google Scholar 

  20. Zhang, L., Patel, H. N., Lappe, J. W., & Wachter, R. M. (2006). Reaction progress of chromophore biogenesis in green fluorescent protein. Journal of the American Chemical Society, 128, 4766–4772.

    Article  CAS  Google Scholar 

  21. Cha, H. J., Wu, C.-F., Valdes, J. J., Rao, G., & Bentley, W. E. (2000). Observations of green fluorescent protein as a fusion partner in genetically engineered Escherichia coli: monitoring protein expression and solubility. Biotechnology and Bioengineering, 67(5), 565–574.

    Article  CAS  Google Scholar 

  22. Seitz, T., Thoma, R., Schoch, G. A., Stihle, M., Benz, J., D'Arcy, B., Wiget, A., Ruf, A., Hennig, M., & Sterner, R. (2010). Enhancing the stability and solubility of the glucocorticoid receptor ligand-binding domain by high-throughput library screening. Journal of Molecular Biology, 403, 562–577.

    Article  CAS  Google Scholar 

  23. Gupta, R. D., & Tawfik, D. S. (2008). Directed enzyme evolution via small and effective neutral drift libraries. Nature Methods, 5(11), 939–942.

    Article  CAS  Google Scholar 

  24. Jiang, S., Li, C., Zhang, W., Cai, Y., Yang, Y., Yang, S., & Jiang, W. (2007). Directed evolution and structural analysis of N-carbamoyl-D-amino acid amidohydrolase provide insights into recombinant protein solubility in Escherichia coli. The Biochemical Journal, 402, 429–437.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant numbers: 21325627, 21572227) and Dalian Institute of Chemical Physics, CAS (grant number: DICP ZZBS201605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongbao K. Zhao.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOC 2215 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, L., Lin, X. et al. Visualizing Soluble Protein Mutants by Using Monomeric Red Fluorescent Protein as a Reporter for Directed Evolution. Appl Biochem Biotechnol 185, 81–90 (2018). https://doi.org/10.1007/s12010-017-2640-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2640-z

Keywords

Navigation