Applied Biochemistry and Biotechnology

, Volume 184, Issue 4, pp 1441–1452 | Cite as

Comparison of One-Stage Batch and Fed-Batch Enzymatic Hydrolysis of Pretreated Hardwood for the Production of Biosugar

  • Liang He
  • Qiang Han
  • Hasan Jameel
  • Hou-min Chang
  • Richard Phillips
  • Ziyu Wang


Fed-batch method has shown a great promise in debottlenecking the high-solid enzymatic hydrolysis for the commercialization of cellulosic biosugar conversion for biofuel/biochemical production. To further improve enzymatic hydrolysis efficiency at high solid loading, fed-batch methods of green liquor-pretreated hardwood were performed to evaluate their effects on sugar recovery by comparing with one-stage batch method in this study. Among all the explored conditions, the fed-batch at 15% consistency gave higher sugar recovery on green liquor-pretreated hardwood compared to that of one-stage batch. By using general linear model analysis, the percentage of enzymatic sugar recovery in fed-batch consistency method (increasing consistency from the initial 10.7 to 15% at intervals of 24 and 48 h) was higher than that of batch hydrolysis at higher density of 15% consistency. Under that best fed-batch condition, the total sugar recovery of pretreated hardwood in enzymatic hydrolysate reached approximately 48.41% at Cellic® enzyme loading of 5 filter-paper unit (FPU)/g and 58.83% at Cellic® enzyme loading of 10 FPU/g with a hydrolysis time of 96 h.


Hardwood Pretreatment Fed-batch methods Enzymatic hydrolysis Sugar recovery 



The authors would like to thank Dr. Dhana Savithri in the Integrated Biomass Research Initiative Laboratory of North Carolina State University for her help on the statistical analysis.

Funding Information

This work was funded by the Wood-to-Ethanol Research Consortium (WERC) of which the members include International Paper, Andritz, VTT, Nalco, Shell, Genencor, Eastman Chemical, and Air Liquide.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Kim, Y., Ximenes, E., Mosier, N. S., & Ladisch, M. R. (2011). Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme and Microbial Technology, 48, 408–415.CrossRefGoogle Scholar
  2. 2.
    Xu, J., Wang, Z., & Cheng, J. J. (2011). Bermuda grass as feedstock for biofuel production: A review. Bioresource Technology, 102, 7613–7620.CrossRefGoogle Scholar
  3. 3.
    Amidon, T., Wood, C., Shupe, A., Wang, Y., Graves, M., & Liu, S. (2008). Biorefinery: Conversion of woody biomass to chemicals, energy, and materials. J Biobased Materials and Bioenergy, 2, 100–120.CrossRefGoogle Scholar
  4. 4.
    Sanchez, O. J., & Cardona, C. A. (2008). Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology, 99, 5270–5295.CrossRefGoogle Scholar
  5. 5.
    Yu, Z., Jameel, H., Chang, H., & Park, S. (2011). The effect of delignification of forest biomass on enzymatic hydrolysis. Bioresource Technology, 102, 9083–9089.CrossRefGoogle Scholar
  6. 6.
    Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18.CrossRefGoogle Scholar
  7. 7.
    Ertas, M., Han, Q., Jameel, H., & Chang, H. M. (2014a). Enzymatic hydrolysis of autohydrolyzed wheat straw followed by refining to produce fermentable sugars. Bioresource Technology, 152, 259–266.CrossRefGoogle Scholar
  8. 8.
    Yang, B., & Wyman, C. E. (2008). Pretreatment: The key to unlocking low-cost cellulosic ethanol. Tren. Biofuels. Bioprod. Bioref., 2, 26–40.CrossRefGoogle Scholar
  9. 9.
    Rosgaard, L., Andric, P., Johansen, K. D., Pedersen, S., & Meyer, A. S. (2007). Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw. Applied Biochemistry and Biotechnology, 143, 27–40.CrossRefGoogle Scholar
  10. 10.
    Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315, 804–807.CrossRefGoogle Scholar
  11. 11.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.CrossRefGoogle Scholar
  12. 12.
    Wu, S. F., Chang, H. M., Jameel, H., & Phillips, R. (2010). Novel green liquor pretreatment of loblolly pine chips to facilitate enzymatic hydrolysis into fermentable sugars for ethanol production. Journal of Wood Chemistry and Technology, 30, 205–218.CrossRefGoogle Scholar
  13. 13.
    Gu, F., Yang, L. F., Jin, Y. C., & Han, Q. (2012). Green liquor pretreatment for improving enzymatic hydrolysis of corn stover. Bioresource Technology, 124, 299–305.CrossRefGoogle Scholar
  14. 14.
    Jin, Y. C., Jameel, H., Chang, H. M., & Phillips, R. (2010). Green liquor pretreatment of mixed hardwood for ethanol production in a repurposed kraft pulp mill. Journal of Wood Chemistry and Technology, 30, 86–104.CrossRefGoogle Scholar
  15. 15.
    Batalha, L. A. R., Han, Q., Jameel, H., Chang, H. M., Colodette, J. L., & Gomes, F. J. B. (2015). Production of fermentable sugars from sugarcane bagasse by enzymatic hydrolysis after autohydrolysis and mechanical refining. Bioresource Technology, 180, 97–105.CrossRefGoogle Scholar
  16. 16.
    Ertas, M., Han, Q., & Jameel, H. (2014b). Acid-catalyzed autohydrolysis of wheat straw to improve sugar recovery. Bioresource Technology, 169, 1–8.CrossRefGoogle Scholar
  17. 17.
    Han, Q., Jin, Y., Jameel, H., Chang, H. M., Phillips, R., & Park, S. (2014). Autohydrolysis pretreatment of waste wheat straw for cellulosic ethanol production in a co-located straw pulp mill. Applied Biochemistry and Biotechnology, 175, 1193–1210.CrossRefGoogle Scholar
  18. 18.
    Jones, B. W., Venditti, R., Park, S., Jameel, H., & Koo, B. (2013). Enhancement in enzymatic hydrolysis by mechanical refining for pretreated hardwood lignocellulosics. Bioresource Technology, 147, 353–360.CrossRefGoogle Scholar
  19. 19.
    Yang, M. H., Li, W. L., Liu, B. B., Li, Q., & Xing, J. M. (2010). High-concentration sugars production from corn stover based on combined pretreatments and fed-batch process. Bioresource Technology, 101, 4884–4888.CrossRefGoogle Scholar
  20. 20.
    Zhao, X. B., Dong, L., Chen, L., & Liu, D. H. (2013). Batch and multi-step fed-batch enzymatic saccharification of Formiline-pretreated sugarcane bagasse at high solid loadings for high sugar and ethanol titers. Bioresource Technology, 135, 350–356.CrossRefGoogle Scholar
  21. 21.
    Wanderley, M. C. D. A., Martín, C., Rocha, G. J. D. M., & Gouveia, E. R. (2013). Increase in ethanol production from sugarcane bagasse based on combined pretreatments and fed-batch enzymatic hydrolysis. Bioresource Technology, 128, 448–453.CrossRefGoogle Scholar
  22. 22.
    Rudolf, A., Alkasrawi, M., Zacchi, G., & Lidén, G. (2005). A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme and Microbial Technology, 37, 195–204.CrossRefGoogle Scholar
  23. 23.
    Mumford, J. A., & Nichols, T. (2009). Simple group fMRI modeling and inference. NeuroImage, 47, 1469–1475.CrossRefGoogle Scholar
  24. 24.
    Lindquist, M. A., Spicer, J., Asllani, I., & Wager, T. D. (2012). Estimating and testing variance components in a multi-level GLM. Geuroimage, 59, 490–501.CrossRefGoogle Scholar
  25. 25.
    Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. (2005a). Determination of extractives in biomass. laboratory analytical procedure, NREL, Report No. TP-510–1617.Google Scholar
  26. 26.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass. laboratory analytical procedure, NREL, Report No. TP-510–42618.Google Scholar
  27. 27.
    Xue, Y., Rusli, J., Chang, H. M., Phillips, R., & Jameel, H. (2012). Process evaluation of enzymatic hydrolysis with filtrate recycle for the production of high concentration sugars. Applied Biochemistry and Biotechnology, 166, 839–855.CrossRefGoogle Scholar
  28. 28.
    McCullaph, P., & Nelder, J. A. (2002). Generalized linear models (p. 511). London: Chapman and Hall.Google Scholar
  29. 29.
    Schwarz, M., & Zimmermann, N. E. (2005). A new GLM-based method for mapping tree cover continuous fields using regional MODIS reflectance data. Remote Sensing of Environment, 95, 428–443.CrossRefGoogle Scholar
  30. 30.
    Dai, W., Word, D. P., & Hahn, J. (2014). Modeling and dynamic optimization of fuel-grade ethanol fermentation using fed-batch process. Control Engineering Practice, 22, 231–241.CrossRefGoogle Scholar
  31. 31.
    Redding, A. P., Wang, Z. Y., Keshwani, D. R., & Cheng, J. J. (2011). High temperature dilute acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis. Bioresource Technology, 102, 1415–1424.CrossRefGoogle Scholar
  32. 32.
    Tomás-Pejó, E., Oliva, J. M., González, A., Ballesteros, I., & Ballesteros, M. (2009). Bioethanol production from wheat straw by the thermotolerant yeast Kluyveromyces marxianus CECT 10875 in a simultaneous saccharification and fermentation fed-batch process. Fuel, 88, 2142–2147.CrossRefGoogle Scholar
  33. 33.
    Chang, Y. H., Chang, K. S., Huang, C. W., Hsu, C. L., & Jang, H. D. (2012). Comparison of batch and fed-batch fermentations using corncob hydrolysate for bioethanol production. Fuel, 97, 166–173.CrossRefGoogle Scholar
  34. 34.
    Khamseh, A. A. G., & Miccio, M. (2012). Comparison of batch, fed-batch and continuous well-mixed reactors for enzymatic hydrolysis of orange peel wastes. Process Biochemistry, 47, 1588–1594.CrossRefGoogle Scholar
  35. 35.
    Kumar, R., Singh, S., & Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology, 35, 377–391.CrossRefGoogle Scholar
  36. 36.
    Corrêa, L. J., Badino, A. C., & Cruz, A. J. (2016). Mixing design for enzymatic hydrolysis of sugarcane bagasse: Methodology for selection of impeller configuration. Bioprocess and Biosystems Engineering, 39, 285–294.CrossRefGoogle Scholar
  37. 37.
    Cavalcanti-Montaño, I. D., Suarez, C. A. G., Giordano, R. D. L. C., Giordano, R. D. C., & Júnior, R. D. S. (2013). Optimal bioreactor operational policies for the enzymatic hydrolysis of sugarcane bagasse. Bioenergy Research, 6, 776–785.CrossRefGoogle Scholar
  38. 38.
    Gao, Y. S., Xu, J. L., Yuan, Z. H., Zhang, Y., Liu, Y. Y., & Liang, C. Y. (2014). Optimization of fed-batch enzymatic hydrolysis from alkali-pretreated sugarcane bagasse for high-concentration sugar production. Bioresource Technology, 167, 41–45.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods,Zhejiang Academy of ForestryHangzhouChina
  2. 2.Department of Forest BiomaterialsNorth Carolina State UniversityRaleighUSA

Personalised recommendations