Skip to main content
Log in

Electroinduced Extraction of Human Ferritin Heavy Chain Expressed in Hansenula polymorpha

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

А protocol for the efficient and selective recovery of human ferritin heavy chain (FTH1) expressed intracellularly in Hansenula polymorpha was developed. It was based on electropermeabilisation and an increase in the cell wall porosity by pulsed electric field (PEF) treatment and subsequent incubation with a low concentration of a lytic enzyme. Irreversible plasma membrane permeabilisation was induced by applying rectangular electric pulses in the flow mode. The electrical treatment itself did not cause the release of the recombinant protein but induced the sensitisation of H. polymorpha cells to the lytic enzyme. Consequently, the subsequent incubation of the permeabilised cells with lyticase led to the recovery of approximately 90% of the recombinant protein, with a purification factor of 1.8. A similar efficiency was obtained by using the industrial lytic enzyme Glucanex. The released FTH1 appears in the form of an oligomer with a molecular mass of approximately 480 kDa, which is able to bind iron. The possibility for scaling the proposed protocol is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gellissen, G., & Hollenberg, C. (1997). Application of yeastin gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis—a review. Gene, 190, 87–98.

    Article  CAS  Google Scholar 

  2. Stöckmann, C., Scheidle, M., Merckelbach, A., Hehmann, G., Klee, D., Büchs, J., Kang, H. A., & Gellissen, G. (2009). Process development in Hansenula polymorpha and Arxula adeninivorans, a re-assessment. Microbial Cell Factories, 8, 22.

    Article  Google Scholar 

  3. Sudar, M., Valinger, D., Findrik, Z., Vasic-Racki, D., & Kurtanjek, Z. (2013). Effect of different variables on the efficiency of Baker’s yeast cell disruption process to obtain alcohol dehydrogenase activity. Applied Biochemistry and Biotechnology, 169, 1039–1055.

    Article  CAS  Google Scholar 

  4. Middelberg, A. P. J. (2012). Releasing biopharmaceutical products from cells. In G. Subramanian (ed.), Biopharmaceutical Production Technology (pp. 79–105). John Wiley & Sons.

  5. Salazar, O., & Asenjo, J. A. (2007). Enzymatic lysis of microbial cells. Biotechnology Letters, 29, 985–994.

    Article  CAS  Google Scholar 

  6. Garcia, F. A. P. (2013). Cell wall disruption and lysis. In M. C. Flickinger (Ed.), Downstream Industrial Biotechnology: Recovery and Purification, First Edition (pp. 81–94). John Wiley & Sons, Inc.

  7. Balasundaram, B., Harrison, S., & Bracewell, G. B. (2009). Advances in product release strategies and impact on bioprocess design. Trends in Biotechnology, 27, 477–485.

    Article  CAS  Google Scholar 

  8. Klis, F. M., Boorsma, A., & De Groot, P. W. (2006). Cell wall construction in Saccharomyces cerevisiae. Yeast, 23, 185–202.

    Article  CAS  Google Scholar 

  9. De Nobel, J. G., & Barnett, J. A. (1991). Passage of molecules through yeast cell walls: a brief essay-review. Yeast, 7, 313–323.

    Article  Google Scholar 

  10. Zlotnik, H., Fernandez, M. P., Bowers, B., & Cabib, E. (1984). Saccharomyces cerevisiae mannoproteins form an external layer that determinates wall porosity. Journal of Bacteriology, 159, 1018–1026.

    CAS  Google Scholar 

  11. Klimek-Ochab, M., Brzezińska-Rodak, M., Żymańczyk-Duda, E., Lejczak, B., & Kafarski, P. (2011). Comparative study of fungal cell disruption—scope and limitations of the methods. Folia Microbiologia (Praha), 56(5), 469–475.

    Article  CAS  Google Scholar 

  12. Garcia-Ortega, X., Reyes, C., Montesinos, J. L., & Valero, F. (2015). Overall key performance indicator to optimizing operation of high-pressure homogenizers for a reliable quantification of intracellular components in Pichia pastoris. Frontiers in Bioengineering and Biotechnology, 3, 107.

    Article  Google Scholar 

  13. Naglak, T.J., & Wang, H. (1990). Protein release from the yeast Pichia pastoris by chemical permeabilisation: comparison to mechanical disruption and enzymatic lysis. In D.L. Pyle (ed.), Separation for Biotechnology 2 (55–64). Springer.

  14. Shepard, S. R., Stone, C., Cook, S., Bouvier, A., Boyd, G., Weatherly, G., Lydiard, D., & Schrimsher, J. (2002). Recovery of intracellular recombinant proteins from the yeast Pichia pastoris by cell permeabilisation. Journal of Biotechnology, 99, 149–160.

    Article  CAS  Google Scholar 

  15. Ferrara, M. A., Bonomo Severino, N. M., Valente, R. H., Perales, J., & Bon, E. P. S. (2010). High-yield extraction of periplasmic asparaginase produced by recombinant Pichia pastoris harboring the Saccharomyces cerevisiae ASP3gene. Enzyme and Microbial Technology, 47, 71–76.

    Article  CAS  Google Scholar 

  16. Shen, S.-H., Bastien, L., Nguyen, T., Fung, M., & Slilaty, S. N. (1989). Synthesis and secretion of hepatitis B middle surface antigen by the methylotrophic yeast Hansenula polymorpha. Gene, 84, 303–309.

    Article  CAS  Google Scholar 

  17. Asenjo, J. A., Ventom, A. M., Huang, R. B., & Andrews, B. A. (1993). Selective release of recombinant protein particles (VLPs) from yeast using a pure lytic glucanase enzyme. Nature Biotechnology, 11, 214–217.

    Article  CAS  Google Scholar 

  18. Weaver, J. C., & Chizmadzhev, Y. A. (1996). Theory of electroporation: A review. Bioelectrochemistry and Bioenergetics, 41, 135–160.

    Article  CAS  Google Scholar 

  19. Rols, M. P., & Teissie, J. (1990). Electropermeabilisation of mammalian cells. Quantitative analysis of the phenomenon. Biophysical Journal, 58, 1089–1098.

    Article  CAS  Google Scholar 

  20. Vorobiev, E., & Lebovka, N.(2011). Pulsed electric field assisted extraction, In N. Lebovka, E. Vorobiev, F. Chemat (eds.), Enhancing extraction processes in the food industry (pp 25–84). CRC Press.

  21. Bobinaite, R., Pataro, G., Lamanauskas, N., Satkauskas, S., Viskelis, P., & Ferrari, G. (2015). Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products. Journal of Food Science and Technology, 52(9), 5898–5905.

    Article  CAS  Google Scholar 

  22. Golberg, A., Sack, M., Teissie, J., Pataro, G., Pliquett, U., Saulis, G., Stefan, T., Miklavcic, D., Vorobiev, E., & Frey, W. (2016). Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnology for Biofuels, 9, 94.

    Article  Google Scholar 

  23. Parniakov, O., Barba, F. J., Grimi, N., Lebovka, N., & Vorobiev, E. (2016). Extraction assisted by pulsed electric energy as a potential tool for green and sustainable recovery of nutritionally valuable compounds from mango peels. Food Chemistry, 192, 842–848.

    Article  CAS  Google Scholar 

  24. Lindmark, J., Lagerkvist, A., Nilsson, E., Carlsson, M., Thorin, E., & Dahlqvist, E. (2014). Evaluating the effects of electroporation pre-treatment on the biogas yield from leycrop silage. Applied Biochemistry and Biotechnology, 174, 2616–2625.

    Article  CAS  Google Scholar 

  25. Ganeva, V., Galutzov, B., & Teissie, J. (2003). High yield electroextraction of proteins by a flow process. Analytical Biochemistry, 315, 77–84.

    Article  CAS  Google Scholar 

  26. Ganeva, V., Galutzov, B., & Teissie, J. (2004). Flow process for electroextraction of intracellular enzymes from the fission yeast Schizosaccharomyces pombe. Biotechnology Letters, 26, 933–937.

    Article  CAS  Google Scholar 

  27. Ganeva, V., Galutzov, B., & Teissie, J. (2014). Evidence that pulsed electric field treatment enhances the cell wall porosity of yeast cells. Applied Biochemistry and Biotechnology, 172, 1540–1552.

    Article  CAS  Google Scholar 

  28. Ganeva, V., Stefanova, D., Angelova, B., Galutzov, B., Velasco, I., & Arevalo-Rodrigez, M. (2015). Electroinduced release of recombinant β-galactosidase from Saccharomyces cerevisiae. Journal of Biotechnology, 211, 12–19.

    Article  CAS  Google Scholar 

  29. Eilert, E., Hollenberg, C. P., Piontek, M., & Suckow, M. (2012). The use of highly expressed FTH1 as carrier protein for cytosolic targeting in Hansenula polymorpha. Journal of Biotechnology, 159, 172–176.

    Article  CAS  Google Scholar 

  30. Ganeva, V., Galutzov, B., & Teissie, J. (1995). Electric field mediated loading of macromolecules is critically controlled at the wall level. Biochimica et Biophysica Acta-Biomembranes, 1240(2), 229–236.

    Article  Google Scholar 

  31. Pringle, J. R., & Mor, J.-R. (1975). Methods for monitoring the growth of yeast cultures and dealing with the clamping problems. Methods in Cell Biology, 11, 131–168.

    Article  CAS  Google Scholar 

  32. Bradford, M. (1976). A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  33. Nesterenko, M. V., Tilley, V., & Upton, S. J. (1994). A simple modification of Blum’s silver staining method allows for 30 min detection of proteins in polyacrylamide gels. Journal of Biochemical and Biophysical Methods, 28, 239–242.

  34. Aguilar-Uscanga, B., & Francois, J. M. (2003). A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Letters in Applied Microbiology, 37, 268–274.

  35. Giuseppin, M. L. F., van Eijk, H. M. J., Hellendoorn, M., & van Almkerk, J. W. (1987). Cell wall strength of Hansenula polymorpha in continuous cultures in relation to recovery of methanol oxidase (MOX). Applied Microbiology and Biotechnology, 27(1), 31–36.

  36. Canales, M., Buxado, J. A., Heynngnezz, L., & Entriquez, A. (1998). Mechanical disruption of Pichia pastoris yeast to recover the recombinant glycoprotein Bm86. Enzyme and Microbial Technology, 23(1–2), 58–83.

  37. Lee, J. L., Song, H. S., Kim, H. J., Park, J. H., Chung, D. K., Park, C. S., Jeoung, D., & Ki, H. Y. (2003). Functional expression and production of human H-ferritin in Pichia pastorisBiotechnology Letters, 25(13), 1019–1023.

  38. Seo, H.-Y., Chang, Y.-J., Chung, Y. J., & Kim, K. S. (2008). Proteomic analysis of recombinant Saccharomyces cerevisiae upon iron deficiency induced via human H-ferritin production. Journal of Microbiology and Biotechnology, 18(8), 1368–1376.

  39. Lee, J. L., Levin, R. E., & Kim, H. Y. (2008). Improved co-expression and multi-assembly properties of recombinant human ferritins subunit in Escherichia coliJournal of Microbiology and Biotechnology, 18(5), 926–932.

  40. Butts, C. A., Swift, J., Kang, S.-G., Di Costanzo, L., Christianson, D. W., Saven, J. G., & Dmochowski, I. J. (2008). Direct noble metal ion chemistry within a designed ferritin protein. Biochemistry, 47, 12729–12739.

  41. Hristozova, T., Michailova, L., Dmitriev, V., Tsiomenko, A., Roshkova, Z., & Tuneva, D. (1994). Investigation of mannan and glycan in the cell wall of Candida boudinii cultivated on methanol. Antonie Van Leeuwenhoek, 65, 13–20.

  42. Kim, M. W., Rhee, S. K., Kim, J.-Y., Schimma, Y., Chiba, Y., & Kang, H. A. (2004). Characterization of N-linked oligosaccharides assembled on secretory recombinant glucose oxidase and cell wall mannoproteins from methylotrophic yeast Hansenula polymorphaGlycobiology, 14(3), 243–251.

  43. Schein, C. H., & Noteborn, M. H. M. (1988). Formation of soluble recombinant proteins in E. coli is favored by lower growth temperatures. Nature Biotechnology, 6, 291–294.

  44. Sörensen, H. P., & Mortensen, K. K. (2005). Soluble expression of recombinant proteins in the cytoplasm of Escherichia coliMicrobial Cell Factories, 4(1), 1–8.

  45. Hackel, B. J., Huang, D., Bubolz, J. C., Wang, X. X., & Shusta, E. V. (2006). Production of soluble and active transferrin receptor-targeting single-chain antibody using Saccharomyces cerevisiaePharmaceutical Research, 23(4), 790–797.

  46. Li, Z., Xiong, F., Lin, Q., d’Anjou, M., Daugulis, A. J., Yang, D. S., & Hew, C. L. (2001). Low-temperature increases the yield of biologically active herring antifreeze protein in Pichia pastorisProtein Expression and Purification, 21(3), 438–445.

  47. van der Klei, I. J., Yurimoto, H., Sakai, Y., & Veenhuis, M. (2006). The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochimica et Biophysica Acta, 1763, 1453–1462.

    Article  Google Scholar 

  48. Scott, J. H., & Schekman, R. (1980). Lyticase: endoglucanase and protease activities that act together in yeast cell lysis. Journal of Bacteriology, 142(2), 414–423.

  49. He, D., & Marles-Wright, J. (2015). Ferritin family proteins and their use in bionanotechnology. New Biotechnology, 32(6), 651–657.

Download references

Funding

This research received funding from the European Union Seventh Framework Programme (FP7/2012–2017) under grant agreement n° 312004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Ganeva.

Additional information

Highlights

• First evidence for electroinduced recovery of recombinant protein from H. polymorpha is presented.

• Protocol based on electropermeabilisation and subsequent incubation with lytic enzyme is proposed.

• The released FTH1 appears in the form of functionally active oligomer with a molecular mass of 480 kDa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganeva, V., Galutzov, B., Angelova, B. et al. Electroinduced Extraction of Human Ferritin Heavy Chain Expressed in Hansenula polymorpha . Appl Biochem Biotechnol 184, 1286–1307 (2018). https://doi.org/10.1007/s12010-017-2627-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2627-9

Keywords

Navigation