Advertisement

Applied Biochemistry and Biotechnology

, Volume 184, Issue 4, pp 1421–1440 | Cite as

Discovery of Potent Neuraminidase Inhibitors Using a Combination of Pharmacophore-Based Virtual Screening and Molecular Simulation Approach

  • Rohini K
  • Shanthi V
Article

Abstract

Neuraminidase (NA), a surface protein, facilitates the release of nascent virus and thus spreads infection. It has been renowned as a potential drug target for influenza A virus infection. The drugs such as oseltamivir, zanamivir, peramivir, and laninamivir are approved for the treatment of influenza infection. Additionally, investigational drugs namely MK2206, tamiphosphor, crenatoside, and dehydroepiandrosterone (DHEA) are also available for the treatment. However, recent outbreaks of highly pathogenic and drug-resistant influenza A strains highlighted the need to discover novel NA inhibitor. Keeping this in mind, in the current investigation, an effort was made to ascertain potent inhibitors using pharmacophore-based virtual screening and docking approach. A 3D pharmacophore model was generated based on the chemical features of approved and investigational NA inhibitors using PHASE module of Schrödinger suite. The model consists of two hydrogen bond acceptors (A), one hydrogen bond donor (D), and one positively charged group (P), AADP. Subsequently, molecules with same pharmacophoric features were screened from among the two million compounds available in the ZINC database using the generated pharmacophore hypothesis. Ligand filtration was also done to obtain an efficient collection of hit molecules by employing Lipinski “rule of five” using Qikprop module. Finally, the screened molecule was subjected to docking and molecular dynamic simulations to examine the inhibiting activity of the compounds. The results of our analysis suggest that “acebutolol hydrochloride” (156792) could be the promising candidates for the treatment of influenza A virus infection.

Keywords

Neuraminidase Pharmacophore model Virtual screening ZINC database Molecular simulation 

Notes

Acknowledgements

The authors thank VIT University for providing “VIT SEED GRANT” for carrying out this research work.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Li, X. B., Wang, S. Q., Xu, W. R., Wang, R. L., & Chou, K. C. (2011). Novel inhibitor design for hemagglutinin against H1N1 influenza virus by core hopping method. PLoS One, 6, e28111.CrossRefGoogle Scholar
  2. 2.
    Mukhtar, M. M., Rasool, S. T., Song, D., Zhu, C., Hao, Q., & Zhu, Y. (2007). Origin of highly pathogenic H5N1 avian influenza virus in China and genetic characterization of donor and recipient viruses. Journal of General Virology, 88, 3094–3099.CrossRefGoogle Scholar
  3. 3.
    Matrosovich, M. N., Matrosovich, T. Y., Gray, T., Roberts, N. A., & Klenk, H. (2004). Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. Journal of Virology, 78, 12665–12667.CrossRefGoogle Scholar
  4. 4.
    Su, Y., Yang, H. Y., Zhang, B. J., Jia, H. L., & Tien, P. (2008). Analysis of a point mutation in H5N1 avian influenza virus hemagglutinin in relation to virus entry into live mammalian cells. Archives of Virology, 153, 2253–2261.CrossRefGoogle Scholar
  5. 5.
    Chan, M. C., Cheung, C. Y., Chui, W. H., Tsao, S. W., Nicholls, J. M., Chan, Y. O., Chan, R. W., Long, H. T., Poon, L. L., Guan, Y., & Peiris, J. S. (2005). Pro-inflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells. Respiratory Research, 6, 135.CrossRefGoogle Scholar
  6. 6.
    Bauer, K., Richter, M., Wutzler, P., & Schmidtke, M. (2009). Different neuraminidase inhibitor susceptibilities of human H1N1, H1N2, and H3N2 influenza A viruses isolated in Germany from 2001 to 2005/06. Antiviral Research, 82, 34–41.CrossRefGoogle Scholar
  7. 7.
    Hurt, A. C., Holien, J. K., Parker, M., & Barr, I. G. (2009). Oseltamivir resistance and the H274Y neuraminidase mutation in seasonal, pandemic and highly pathogenic influenza viruses. Drugs, 69, 2523–2531.CrossRefGoogle Scholar
  8. 8.
    Shobugawa, Y., Saito, R., Sato, I., Kawashima, T., Dapat, C., Dapat, I. C., Kondo, H., Suzuki, Y., Saito, K., & Suzuki, H. (2012). Clinical effectiveness of neuraminidase inhibitor—oseltamivir, zanamivir, laninamivir, and peramivir—for treatment of influenza A(H3N2) and A(H1N1) pdm09 infection: an observational study in the 2010-2011 influenza season in Japan. Journal of Infection and Chemotherapy, 18, 858–864.CrossRefGoogle Scholar
  9. 9.
    Pizzorno, A., Abed, Y., Plante, P. L., Carbonneau, J., Baz, M., Hamelin, M. E., Corbeil, J., & Boivin, G. (2014). Evolution of oseltamivir resistance mutations in influenza A(H1N1) and A(H3N2) viruses during selection in experimentally infected mice. Antimicrobial Agents and Chemotherapy, 58, 6398–6405.CrossRefGoogle Scholar
  10. 10.
    Wu, N. C., Young, A. P., Dandekar, S., Wijersuriya, H., Al-Mawsawi, L. Q., Wu, T. T., & Sun, R. (2013). Systematic identification of H274Y compensatory mutations in influenza a virus neuraminidase by high-throughput screening. Journal of Virology, 87, 1193–1199.CrossRefGoogle Scholar
  11. 11.
    Yen, H. L., McKimm-Breschkin, J. L., Choy, K. T., Wong, D. D. Y., Cheung, P. P. H., Zhou, J., Ng, I. H., Zhu, H., Webby, R. J., Guan, Y., Webster, R. G., & Peirisa, J. S. M. (2013). Resistance to neuraminidase inhibitors conferred by an R292K mutation in a human influenza virus H7N9 isolate can be masked by a mixed R/K viral population. MBio, 4, e00396–e00313.CrossRefGoogle Scholar
  12. 12.
    McKimm-Breschkin. (2012). Influenza neuraminidase inhibitors: antiviral action and mechanisms of resistance. Influenza and Other Respiratory Viruses, 7, 25–36.CrossRefGoogle Scholar
  13. 13.
    Escuret, V., Collins, P. J., Casalegno, J. S., Vachieri, S. G., Cattle, N., Ferraris, O., Sabatier, M., Frobert, E., Caro, V., Skehel, J. J., Gamblin, S., Valla, F., Valette, M., Ottmann, M., McCauley, J. W., Daniels, R. S., & Lina, B. (2014). A novel I221L substitution in neuraminidase confers high-level resistance to oseltamivir in influenza B viruses. The Journal of Infectious Diseases, 210, 1260–1269.CrossRefGoogle Scholar
  14. 14.
    LeGoff, J., Rousset, D., Abou-Jaoudé, G., Scemla, A., Ribaud, P., Mercier-Delarue, S., Caro, V., Enouf, V., Simon, F., Molina, J., & van der Werf, S. (2012). I223R mutation in influenza A(H1N1)pdm09 neuraminidase confers reduced susceptibility to oseltamivir and Zanamivir and enhanced resistance with H275Y. PLoS One, 7, e37095.CrossRefGoogle Scholar
  15. 15.
    Shanthi, V., Ramanathan, K., & Sethumadhavan, R. (2010). Exploring the role of C-H....pi interactions on the structural stability of single chain “all-alpha” proteins. Applied Biochemistry and Biotechnology, 160, 1473–1483.CrossRefGoogle Scholar
  16. 16.
    Karthick, V., Shanthi, V., Rajasekaran, R., & Ramanathan, K. (2012). Exploring the cause of oseltamivir resistance against mutant H274Y neuraminidase by molecular simulation approach. Applied Biochemistry and Biotechnology, 167, 237–249.CrossRefGoogle Scholar
  17. 17.
    Preethi, B., Shanthi, V., & Ramanathan, K. (2015). Investigation of nalidixic acid resistance mechanism in Salmonella enterica using molecular simulation techniques. Applied Biochemistry and Biotechnology, 177, 528–540.CrossRefGoogle Scholar
  18. 18.
    Kumar, A., Shanthi, V., & Ramanathan, K. (2016). Discovery of potential ALK inhibitors by virtual screening approach. 3 Biotech, 6, 21.CrossRefGoogle Scholar
  19. 19.
    Shoichet, B. K. (2004). Virtual screening of chemical libraries. Nature, 432, 862–865.CrossRefGoogle Scholar
  20. 20.
    Karthick, V., Ramanathan, K., Shanthi, V., & Rajasekaran, R. (2013). Identification of potential inhibitors of H5N1 influenza A virus neuraminidase by ligand-based virtual screening approach. Cell Biochemistry and Biophysics, 66, 657–669.CrossRefGoogle Scholar
  21. 21.
    Shahlaei, M., & Doosti, E. (2016). Virtual screening based on pharmacophore model followed by docking simulation studies in search of potential inhibitors for p38 map kinase. Biomedicine & Pharmacotherapy, 80, 352–372.CrossRefGoogle Scholar
  22. 22.
    Kumar, S. P., & Jha, P. C. (2016). Multi-level structure-based pharmacophore 20ruids20g of caspase-3-non-peptide complexes: extracting essential pharmacophore features and its application to virtual screening. Chemico-Biological Interactions, 254, 207–220.CrossRefGoogle Scholar
  23. 23.
    Tseng, T. S., Chuang, S. M., Hsiao, N. W., Chen, Y. W., Lee, Y. C., Lin, C. C., Huang, C., & Tsai, K. C. (2016). Discovery of a potent cyclooxygenase-2 inhibitor, S4, through docking-based pharmacophore screening, in vivo and in vitro estimations. Molecular BioSystems, 12, 2541–2551.CrossRefGoogle Scholar
  24. 24.
    Khanfar, M. A., Al-Qtaishat, S., Habash, M., & Taha, M. O. (2016). Discovery of potent adenosine A2a antagonists as potential anti-Parkinson disease agents. Non-linear QSAR analyses integrated with pharmacophore modeling. Chemico-Biological Interactions, 254, 93–101.CrossRefGoogle Scholar
  25. 25.
    Ronca, R., Giacomini, A., Di Salle, E., Coltrini, D., Pagano, K., Ragona, L., Matarazzo, S., Rezzola, S., Maiolo, D., Torrella, R., Moroni, E., Mazzieri, R., Escobar, G., Mor, M., Colombo, G., & Presta, M. (2015). Long-pentraxin 3 derivative as a small-molecule FGF trap for cancer therapy. Cancer Cell, 28, 225–239.CrossRefGoogle Scholar
  26. 26.
    Bhadauriya, A., Dhoke, G. V., Gangwal, R. P., Damre, M. V., & Sangamwar, A. T. (2013). Identification of dual acetyl-CoA carboxylases 1 and 2 inhibitors by pharmacophore based virtual screening and molecular docking approach. Molecular Diversity, 17, 139–149.CrossRefGoogle Scholar
  27. 27.
    Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., & Weissig, H. (2000). The protein data bank. Nucleic Acids Research, 28, 235–242.CrossRefGoogle Scholar
  28. 28.
    Vavricka, C. J., Li, Q., Wu, Y., Qi, J., Wang, M., Liu, Y., Gao, F., Liu, J., Feng, E., He, J., Wang, J., Liu, H., Jiang, H., & Gao, G. F. (2011). Structural and functional analysis of laninamivir and its octanoate prodrug reveals group specific mechanisms for influenza NA inhibition. PLoS Pathogens, 7, e1002249.CrossRefGoogle Scholar
  29. 29.
    Irwin, J. J., & Shoichet, B. K. (2005). ZINC—a free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45, 177–182.CrossRefGoogle Scholar
  30. 30.
    Chang, C. K., Jeyachandran, S., Hu, N. J., Liu, C. L., Lin, S. Y., Wang, Y. S., Chang, Y. M., & Hou, M. H. (2016). Structure-based virtual screening and experimental validation of the discovery of inhibitors targeted towards the human corona virus nucleocapsid protein. Molecular BioSystems, 12, 59–66.CrossRefGoogle Scholar
  31. 31.
    Dixon, S. L., Smondyrev, A. M., & Rao, S. N. (2006). PHASE: a novel approach to pharmacophore modeling and 3D database searching. Chemical Biology & Drug Design, 67, 370–372.CrossRefGoogle Scholar
  32. 32.
    Lipinski, C. A. (2000). Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods, 44, 235–249.CrossRefGoogle Scholar
  33. 33.
    Huang, Q., Li, L. L., & Yang, S. Y. (2010). PhDD: a new pharmacophore-based de novo design method of drug-like molecules combined with assessment of synthetic accessibility. Journal of Molecular Graphics & Modelling, 28, 775–787.CrossRefGoogle Scholar
  34. 34.
    Watts, K. S., Dalal, P., Murphy, R. B., Sherman, W., Friesner, R. A., & Shelley, J. C. (2010). ConfGen: a conformational search method for efficient generation of bioactive conformers. Journal of Chemical Information and Modeling, 50, 534–546.CrossRefGoogle Scholar
  35. 35.
    Dixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., & Friesner, R. A. (2006). PHASE: a new engine for pharmacophore perception, 3D QSAR model development and 3D database screening: 1. Methodology and preliminary results. Journal of Computer-Aided Molecular Design, 20, 647–671.CrossRefGoogle Scholar
  36. 36.
    Bharatham, K., Bharatham, N., & Lee, K. W. (2007). Pharmacophore modeling for protein tyrosine phosphatase 1B inhibitors. Archives of Pharmacal Research, 30, 533–542.CrossRefGoogle Scholar
  37. 37.
    Rajamanikandan, S., & Srinivasan, P. (2016). Pharmacophore modeling and structure-based virtual screening to identify potent inhibitors targeting LuxP of Vibrio harveyi. Journal of Receptor and Signal Transduction Research, 6, 1–16.Google Scholar
  38. 38.
    Singh, A. A., Sivakumar, D., & Somvanshi, P. (2011). Cataloguing functionally relevant polymorphisms in gene DNA ligase I: a computational approach. 3 Biotech, 1, 47.CrossRefGoogle Scholar
  39. 39.
    Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27, 221–234.CrossRefGoogle Scholar
  40. 40.
    Ekhteiari Salmas, R., Unlu, A., Bektaş, M., Yurtsever, M., Mestanoglu, M., & Durdagi, S. (2016). Virtual screening of small molecules databases for discovery of novel PARP-1 inhibitors: combination of in silico and in vitro studies. Journal of Biomolecular Structure & Dynamics, 17, 1–17.CrossRefGoogle Scholar
  41. 41.
    Tikhonova, I. G., Sum, C. S., Neumann, S., Engel, S., Raaka, B. M., Costanzi, S., & Gershengorn, M. C. (2008). Discovery of novel agonists and antagonists of the free fatty acid receptor 1 (FFAR1) using virtual screening. Journal of Medicinal Chemistry, 51, 625–633.CrossRefGoogle Scholar
  42. 42.
    Muralidharan, A. R., Selvaraj, C., Singh, S., Nelson Jesudasan, C. A., Geraldine, P., & Thomas, P. (2014). Virtual screening based on pharmacophoric features of known calpain inhibitors to identify potent inhibitors of calpain. Medicinal Chemistry Research, 23, 2445–2455.CrossRefGoogle Scholar
  43. 43.
    Nair, S. B., Fayaz, S. M., & Krishnamurthy, R. G. (2012). In silico prediction of novel inhibitors of the DNA binding activity of FoxG1. Medicinal Chemistry, 8, 1155–1162.Google Scholar
  44. 44.
    Ramatenki, V., Dumpati, R., Vadija, R., Vellanki, S., Potlapally, S. R., Rondla, R., & Vuruputuri, U. (2017). Identification of new lead molecules against UBE2NL enzyme for cancer therapy. Applied Biochemistry and Biotechnology, 182, 1497–1517.CrossRefGoogle Scholar
  45. 45.
    Ramezani, F., Amanlou, M., & Rafii-Tabar, H. (2014). Gold nanoparticle shape effects on human serum albumin corona interface: a molecular dynamic study. Journal of Nanoparticle Research, 16, 2512.CrossRefGoogle Scholar
  46. 46.
    Schuttelkopf, A. W., & Van Aalten, D. M. F. (2004). PRODRG—a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica, 60, 1355–1363.Google Scholar
  47. 47.
    Karthick, V., Shanthi, V., Rajasekaran, R., & Ramanathan, K. (2013). In silico analysis of drug-resistant mutant of neuraminidase (N294S) against oseltamivir. Protoplasma, 250, 197–207.CrossRefGoogle Scholar
  48. 48.
    Yang, S. Y. (2010). Pharmacophore modeling and applications in drug discovery: Challenges and recent advances. Drug Discovery Today, 15, 444–450.CrossRefGoogle Scholar
  49. 49.
    Gubareva, L. V., Robinson, M. J., Bethell, R. C., & Webster, R. G. (1997). Catalytic and framework mutations in the neuraminidase active site of influenza viruses that are resistant to 4-guanidino-Neu5Ac2en. Journal of Virology, 71, 3385–3390.Google Scholar
  50. 50.
    Lipinski, C. A. (2004). Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies, 1, 337–341.CrossRefGoogle Scholar
  51. 51.
    Kalani, K., Yadav, D. K., Khan, F., Srivastava, S. K., & Suri, N. (2012). Pharmacophore, QSAR, and ADME based semi-synthesis and in vitro evaluation of ursolic acid analogsfor anticancer activity. Journal of Molecular Modeling, 18, 3389–3413.CrossRefGoogle Scholar
  52. 52.
    Gaddaguti, V., Venkateswara Rao, T., & Prasada Rao, A. (2016). Potential mosquito repellent compounds of Ocimum species against 3N7H and 3Q8I of Anopheles Gambiae. 3 Biotech, 6, 26.CrossRefGoogle Scholar
  53. 53.
    Sargsyan, K., Grauffel, C., & Lim, C. (2017). How molecular size impacts RMSD applications in molecular dynamics simulations. Journal of Chemical Theory and Computation, 13, 1518–1524.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Biotechnology, School of Bio Sciences and TechnologyVIT UniversityVelloreIndia

Personalised recommendations