Skip to main content
Log in

Production and Characterization of F(Ab’)2 Fragments Obtained by Enzymatic Digestion from Murine Anti-MRSA PBP2a Monoclonal Antibodies

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are a worldwide health problem. In a previous study, a murine monoclonal antibody (mMAB), capable of binding to PBP2a within MRSA strains, was generated. F(ab’)2 antibody fragments are widely described in the literature as immunochemical tools and reagents for diagnostics and therapeutics, particularly because of their low immunogenicity and rapid pharmacokinetics. In this study, F(ab’)2 fragments from mMAB were generated by enzymatic digestion, using pepsin. They were purified by affinity chromatography using protein A and concentrated by a MWCO 50 kDa filtration unit. The results indicate that it is possible to obtain F(ab’)2 fragments by pepsin digestion. ELISA, western blotting, and fluorescence microscopy data demonstrated that F(ab’)2 affinity for PBP2a is not lost even after the enzymatic digestion process. As expected, in the pharmacokinetics tests, F(ab’)2 presented a faster elimination (between 12 and 18 h) compared to IgG. These F(ab’)2 fragments could be used in future immunodiagnostic applications, including in vitro or in situ radiolabeling and in the treatment of infections caused by this important pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

EBC:

epidemic brazilian clone

ELISA:

enzyme-linked immunosorbent assay

MRSA:

methicillin-resistant Staphylococcus aureus

MSSA:

methicillin-sensitive Staphylococcus aureus

MWCO:

molecular weight cutoff

OD:

optical density

PBS:

phosphate-buffered saline

References

  1. Tattevin, P. (2011). Community-acquired methicillin-resistant Staphylococcus aureus (MRSA) infections. Médecine et Maladies Infectieuses, 41(4), 167.

    Article  CAS  Google Scholar 

  2. Purrello, S. M., Garaub, J., Giamarellos, E., Mazzeid, T., Peae, F., & Soriano, A. S. (2016). Methicillin-resistant Staphylococcus aureus infections: a review of the currently available treatment options. Journal of Global Antimicrobial Resistance, 7, 178–186.

    Article  CAS  Google Scholar 

  3. Rossi, F., Diaz, L., Wollam, A., Panesso, D., Zhou, Y., Rincon, S., Narechania, A., Xing, G., Di Gioia, T. S., Doi, A., Tran, T. T., Reyes, J., Munita, J. M., Carvajal, L. P., Hernandez-Roldan, A., Brandão, D., van der Heijden, I. M., Murray, B. E., Planet, P. J., Weinstock, G. M., & Arias, C. A. (2014). Transferable vancomycin resistance in a community-associated MRSA lineage. The New England Journal of Medicine, 370(16), 1524–1531.

    Article  CAS  Google Scholar 

  4. Zurita, J., Mejia, C., & Guzman-Blanco, M. (2010). Diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus in Latin America. The Brazilian Journal of Infectious Diseases, 14(S), S97–S106.

    Article  Google Scholar 

  5. Mason, W. J., Blevins, J. S., Beenken, K., et al. (2001). Multiplex PCR protocol for the diagnosis of staphylococcal infection. Journal of Clinical Microbiology, 39, 3332–3338.

    Article  CAS  Google Scholar 

  6. Matsui, H., Hanaki, H., Inoue, M., Akama, H., Nakae, T., Sunakawa, K., & Omura, S. (2011). Development of an immunochromatographic strip for simple detection of penicillin-binding protein 2a. Clinical and Vaccine Immunology, 18(2), 248–253.

    Article  CAS  Google Scholar 

  7. Matos, P., Schuenck, R. P., Cavalcante, F. S., Caboclo, M. F., & dos Santos, K. R. N. (2010). Accuracy of phenotypic methicillin susceptibility methods in the detection of Staphylococcus aureus isolates carrying different SCCmec types. Memórias do Instituto Oswaldo Cruz, 105(7), 931–934.

    Article  Google Scholar 

  8. Zhiang, A. N. (2009). Therapeutic monoclonal antibodies from bench to clinic (1st ed.). Hoboken: Wiley.

    Google Scholar 

  9. Heskamp, S., van Laarhoven, H. W., Molkenboer-Kuenen, J. D., Bouwman, W. H., van der Graaf, W. T., Oyen, W. J., et al. (2012). Optimization of IGF-1R SPECT/CT imaging using 111In-labeled F(ab′)2 and fab’ fragments of the monoclonal antibody R1507. Molecular Pharmaceutics, 9(8), 2314–2321.

    Article  CAS  Google Scholar 

  10. Seferian, P. G., & Rodkey, L. S. (1994). Antibody synthesis induced by endogenous internal images. Applied Biochemistry and Biotechnology, 47(2–3), 213–227.

    Article  CAS  Google Scholar 

  11. Senna, J. P., Teixeira, M. G., Santiago, M., Batoréu, N., Valadares, N., & Galler, R. (2015). Generation and characterization of murine monoclonal antibodies anti-PBP2a of methicillin-resistant Staphylococcus aureus. Monoclonal Antibodies in Immunodiagnosis and Immunotheraphy, 34(4), 257–262.

    Article  CAS  Google Scholar 

  12. Andrew, S. M., & Titus, J. A. (2003). Fragmentation of immunoglobulin G. Current protocols in cell biology (pp. 16.4.1–16.4.10). Hoboken: Wiley.

    Google Scholar 

  13. Kittipongwarakarn, S., Hawe, A., Tantipolphan, R., Limsuwun, K., Khomvilai, S., Puttipipatkhachorn, S., et al. (2011). New method to produce equine antirabies immunoglobulin F(ab′)2 fragments from crude plasma in high quality and yield. European Journal of Pharmaceutics and Biopharmaceutics., 78(2), 189–195.

    Article  CAS  Google Scholar 

  14. Kurien, B. T., Dorri, Y., Dillon, S., Dsouza, A., & Scofield, R. H. (2011). An overview of western blotting for determining antibody specificities for immunohistochemistry. In A. E. Kalyuzhny (Ed.), Signal transduction immunohistochemistry: methods and protocols (pp. 55–67). Totowa: Humana Press.

    Chapter  Google Scholar 

  15. Argondizzo, A. P. C., Rocha-de-Souza, C. M., de Almeida Santiago, M., Galler, R., Reis, J. N., & Medeiros, M. A. (2017). Pneumococcal predictive proteins selected by microbial genomic approach are serotype cross-reactive and bind to host extracellular matrix proteins. Applied Biochemistry and Biotechnology, 182(4), 1518–1539.

    Article  CAS  Google Scholar 

  16. Teixeira, L., Resende, C. A., Ormonde, L. R., Rosenbaum, R., Figueiredo, A. M. S., de Lencastre, H., & Tomasz, A. (1995). Geographic spread of epidemic multiresistant Staphylococcus aureus clone in Brazil. Journal of Clinical Microbiology, 33, 2400–2404.

    CAS  Google Scholar 

  17. Kemeny, D. M., Urbanek, R., Richards, D., & Greenall, C. (1987). Development of a semi-quantitative enzyme-linked immunosorbent assay (ELISA) for detection of human IgG subclass antibodies. Journal of Immunological Methods, 96(1), 47–56.

    Article  CAS  Google Scholar 

  18. Hong, X., Qin, J., Li, T., Dai, Y., Wang, Y., Liu, Q., He, L., Lu, H., Gao, Q., Lin, Y., & Li, M. (2016). Staphylococcal protein a promotes colonization and immune evasion of the epidemic healthcare-associated MRSA ST239. Frontiers in Microbiology, 7, 951–965.

    Google Scholar 

  19. Rodriguez, C., Nam, D. H., Kruchowy, E., Ge, X. (2017). Efficient antibody assembly in E. coli periplasm by disulfide bond folding factor co-expression and culture optimization. Applied Biochemistry and Biotechnology, 183(2), 520–529.

  20. Pan, Y., Mao, W., Liu, X., Xu, C., He, Z., Wang, W., et al. (2012). Selection of single chain variable fragments specific for the human-inducible costimulator using ribosome display. Applied Biochemistry and Biotechnology, 168(5), 967–979.

    Article  CAS  Google Scholar 

  21. Kurkela, R., Vuolas, L., & Vihko, P. (1988). Preparation of F(ab')2 fragments from monoclonal mouse IgG1 suitable for use in radioimaging. Journal of Immunological Methods, 110(2), 229–236.

    Article  CAS  Google Scholar 

  22. Boguslawski, S. J., Ledden, D. J., Fredrickson, R. A. (1989). Improved procedure for preparation of F(ab′)2 fragments of mouse IgGs by papain digestion. Journal of Immunological Methods, 120(1), 51–6.

  23. Tabrizi, M. A., Tseng, C. M., Roskos, L. K. (2006). Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discovery Today, 11, 81–88.

  24. Bazin-Redureau, M. I., Renard, C. B., Scherrmann, J. M. (1997). Pharmacokinetics of heterologous and homologous immunoglobulin G, F(ab’)2 and Fab after intravenous administration in the rat. The Journal of Pharmacy and Pharmacology, 49(3), 277–281.

Download references

Acknowledgements

The authors are very grateful to all technicians of the Animal Experimentation Laboratory (Fiocruz) who provided technical support for the animal experimentation assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Erika Vieira de Araujo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Araujo, A.E.V., de Souza, N.P., de Sousa, A.P.B. et al. Production and Characterization of F(Ab’)2 Fragments Obtained by Enzymatic Digestion from Murine Anti-MRSA PBP2a Monoclonal Antibodies. Appl Biochem Biotechnol 185, 72–80 (2018). https://doi.org/10.1007/s12010-017-2624-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2624-z

Keywords

Navigation