Applied Biochemistry and Biotechnology

, Volume 184, Issue 4, pp 1347–1357 | Cite as

Cloning, Expression, and Production of Xylo-Oligosaccharides by Using a Newly Screened Xylanase Isolated from Bovine Rumen

  • J. M. Lim
  • J. H. Choi
  • J. W. Choi
  • J. W. Yun
  • T. J. Park
  • J. P. Park


Recently, there has been growing interest in the new types of functional prebiotics, including xylo-oligosaccharides (XOS) [1, 2, 3], fructo-oligosaccharides (FOS) [4, 5], malto-oligosaccharides (MOS) [6, 7], isomalto-oligosaccharides (IMOS) [8, 9], inulo-oligosaccharides (IOS) [10, 11, 12], and other derivatives [13]. The fast-growing industry of functional foods and other food-related products allows investigation of bioactive materials and new technologies for improving the large-scale production of functional prebiotics. Of these prebiotics, XOS can be produced by the hydrolysis of xylan or xylan-containing agricultural sources as the substrate by enzymatic reaction with the endo- and/or exo-xylanases derived from various microorganisms, including Cellulomonas flavigena [14], Streptomyces rameus [2], Actinomadura species [15], Geobacillus thermoleovorans [1], Paecilomyces thermophila [3], Aspergillus usamii [16], and other microorganisms [17, 18, 19]. XOS are...



The authors appreciate the experimental assistance and valuable comments provided by Dr. Do Young Kim, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea. This work for J.H. Choi was supported by a basic research grant from the KRIBB.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2017_2623_MOESM1_ESM.docx (80 kb)
ESM 1 (DOCX 80 kb)


  1. 1.
    Verma, D., & Satyanarayana, T. (2012). Cloning, expression and applicability of thermo-alkali-stable xylanase of Geobacillus thermoleovorans in generating xylooligosaccharides from agro-residues. Bioresource Technology, 107, 333–338.CrossRefGoogle Scholar
  2. 2.
    Li, X., Li, E., Zhu, Y., Teng, C., Sun, B., Song, H., & Yang, R. (2012). A typical endo-xylanase from Streptomyces rameus L2001 and its unique characteristics in xylooligosaccharide production. Carbohydrate Research, 359, 30–36.CrossRefGoogle Scholar
  3. 3.
    Zhang, M., Jiang, Z., Yang, S., Hua, C., & Li, L. (2010). Cloning and expression of a Paecilomyces thermophila xylanase gene in E. coli and characterization of the recombinant xylanase. Bioresource Technology, 101, 688–695.CrossRefGoogle Scholar
  4. 4.
    Borromei, C., Careri, M., Cavazza, A., Corradini, C., Elviri, L., Mangia, A., & Merusi, C. (2009). Evaluation of fructooligosaccharides and inulins as potentially health benefiting food ingredients by HPAEC-PED and MALDI-TOF MS. International Journal of Analytical Chemistry, 2009, 1–9.CrossRefGoogle Scholar
  5. 5.
    Jalan, N., Varshney, L., Misra, N., Paul, J., Mitra, D., Rairakhwada, D. D., Bhathena, Z., & Kumar, V. (2013). Studies on production of fructo-oligosaccharides (FOS) by gamma radiation processing of microbial levan. Carbohydrate Polymer, 96, 365–370.CrossRefGoogle Scholar
  6. 6.
    Dey, G., Palit, S., Banerjee, R., & Maiti, B. R. (2002). Purification and characterization of maltooligosaccharide-forming amylase from Bacillus circulans GRS 313. Journal of Industrial Microbiology Biotechnology, 28, 193–200.CrossRefGoogle Scholar
  7. 7.
    Doukyu, N., Yamagishi, W., Kuwahara, H., Ogino, H., & Furuki, N. (2007). Purification and characterization of a maltooligosaccharide-forming amylase that improves product selectivity in water-miscible organic solvents, from dimethylsulfoxide-tolerant Brachybacterium sp. strain LB25. Extremophiles, 11, 781–788.CrossRefGoogle Scholar
  8. 8.
    Goulas, A. K., Cooper, J. M., Grandison, A. S., & Rastall, R. A. (2004). Synthesis of isomaltooligosaccharides and oligodextrans in a recycle membrane bioreactor by the combined use of dextransucrase and dextranase. Biotechnology and Bioengineering, 88, 778–787.CrossRefGoogle Scholar
  9. 9.
    Watanabe, H., Nishimoto, T., Kubota, M., Chaen, H., & Fukuda, S. (2006). Cloning, sequencing, and expression of the genes encoding an isocyclomaltooligosaccharide glucanotransferase and an alpha-amylase from a Bacillus circulans strain. Bioscience Biotechnology and Biochemistry, 70, 2690–2702.CrossRefGoogle Scholar
  10. 10.
    Cho, Y. J., Sinha, J., Park, J. P., & Yun, J. W. (2001). Production of inulooligosaccharides from chicory extract by endoinulinase from Xanthomonas oryzae No. 5. Enzyme and Microbial Technology, 28, 439–445.CrossRefGoogle Scholar
  11. 11.
    Borromei, C., Cavazza, A., Merusi, C., & Corradini, C. (2009). Characterization and quantitation of short-chain fructooligosaccharides and inulooligosaccharides in fermented milks by high-performance anion-exchange chromatography with pulsed amperometric detection. Journal of Separation Science, 32, 3635–3642.CrossRefGoogle Scholar
  12. 12.
    Yun, J. W., Choi, Y. J., Song, C. H., & Song, S. K. (1999). Microbial production of inulo-oligosaccharides by an endoinulinase from Pseudomonas sp. expressed in Escherichia coli. Journal of Bioscience and Bioengineering, 87, 291–295.CrossRefGoogle Scholar
  13. 13.
    Biagi, G., Cipollini, I., Bonaldo, A., Grandi, M., Pompei, A., Stefanelli, C., & Zaghini, G. (2013). Effect of feeding a selected combination of galacto-oligosaccharides and a strain of Bifidobacterium pseudocatenulatum on the intestinal microbiota of cats. American Journal of Veterinary Research, 74, 90–95.CrossRefGoogle Scholar
  14. 14.
    Amaya-Delgado, L., Meja-Castillo, T., Santiago-Hernndez, A., Vega-Estrada, J., Amelia, F.-G. S., Xoconostle-Czares, B., Ruiz-Medrano, R., Montes-Horcasitas, M.d. C., & Hidalgo-Lara, M. E. (2010). Cloning and expression of a novel, moderately thermostable xylanase-encoding gene (Cfl xyn11A) from Cellulomonas flavigena. Bioresource Technology, 101, 5539–5545.Google Scholar
  15. 15.
    Sriyapai, T., Somyoonsap, P., Matsui, K., Kawai, F., & Chansiri, K. (2011). Cloning of a thermostable xylanase from Actinomadura sp. S14 and its expression in Escherichia coli and Pichia pastoris. Journal of Bioscience and Bioengineering, 111, 528–536.CrossRefGoogle Scholar
  16. 16.
    Zhou, C., Bai, J., Deng, S., Wang, J., Zhu, J., Wu, M., & Wang, W. (2008). Cloning of a xylanase gene from Aspergillus usamii and its expression in Escherichia coli. Bioresource Technology, 99, 831–838.CrossRefGoogle Scholar
  17. 17.
    Cheng, F., Sheng, J., Dong, R., Men, Y., Gan, L., & Shen, L. (2012). Novel xylanase from a holstein cattle rumen metagenomic library and its application in xylooligosaccharide and ferulic acid production from wheat straw. Journal of Agricultural Food Chemistry, 60, 12516–12524.CrossRefGoogle Scholar
  18. 18.
    Lafond, M., Tauzin, A., Desseaux, V., Bonnin, E., Ajandouz, H., & Giardina, T. (2011). GH10 xylanase D from Penicillium funiculosum: biochemical studies and xylooligosaccharide production. Microbial Cell Factories, 10, 20–28.CrossRefGoogle Scholar
  19. 19.
    Kim, D. Y., Ham, S.-J., Kim, H. J., Kim, J., Lee, M.-H., Cho, H.-Y., Shin, D.-H., Rhee, Y. H., Son, K.-H., & Park, H.-Y. (2012). Novel modular endo-b-1,4-xylanase with transglycosylation activity from Cellulosimicrobium sp. strain HY-13 that is homologous to inverting GH family 6 enzymes. Bioresource Technology, 107, 25–32.CrossRefGoogle Scholar
  20. 20.
    Valdes-Varela, L., Ruas-Madiedo, & Gueimonde, P. M. (2017). In vitro fermentation of different fructo-oligosaccharides by Bifidobacterium strains for the selection of synbiotic combinations. International Journal of Food Microbiology, 242, 19–23.CrossRefGoogle Scholar
  21. 21.
    Pontonio, E., Mahony, J., Di Cagno, R., O'Connell Motherway, M., Lugli, G. A., O'Callaghan, A., De Angelis, M., Ventura, M., Gobbetti, M., & van Sinderen, D. (2016). Cloning, expression and characterization of a beta-D-xylosidase from Lactobacillus rossiae DSM 15814(T). Microbial Cell Factories, 15, 72–84.CrossRefGoogle Scholar
  22. 22.
    Kamondi, S., Szilgyi, A., Barna, L., & Zvodszky, P. (2008). Engineering the thermostability of a TIM-barrel enzyme by rational family shuffling. Biochemical and Biophysical Research Communications, 374, 725–730.CrossRefGoogle Scholar
  23. 23.
    Wang, Y., Feng, S., Zhan, T., Huang, Z., Wu, G., & Liu, Z. (2013). Improving catalytic efficiency of endo-b1, 4-xylanase from Geobacillus stearothermophilus by directed evolution and H179 saturation mutagenesis. Journal of Biotechnology, 168, 341–347.CrossRefGoogle Scholar
  24. 24.
    Yang, C.-H., Yang, S.-F., & Liu, W.-H. (2007). Production of xylooligosaccharides from xylans by extracellular xylanases from Thermobifida fusca. Journal of Agricultural Food Chemistry, 55, 3955–3959.CrossRefGoogle Scholar
  25. 25.
    Ko, K.-C., Han, Y., Shin, B. S., Choi, J. H., & Song, J. J. (2012). A rapid and simple method for preparing an insoluble substrate for screening of microbial xylanase. Applied Biochemistry and Biotechnology, 167, 677–684.CrossRefGoogle Scholar
  26. 26.
    Ko, K.-C., Han, Y., Cheong, D.-E., Choi, J. H., & Song, J. J. (2013). Strategy for screening metagenomic resources for exocellulase activity using a robotic, high-throughput screening system. Journal of Microbiological Methods, 94, 311–316.CrossRefGoogle Scholar
  27. 27.
    Choengpanya, K., Arthornthurasuk, S., Wattana-amorn, P., Huang, W.-T., Plengmuankhae, W., Li, Y.-K., & Kongsaeree, P. T. (2015). Cloning, expression and characterization of b-xylosidase from Aspergillus niger ASKU28. Protein Expression and Purification, 115, 132–140.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Pharmaceutical EngineeringDaegu Haany UniversityGyeongsanRepublic of Korea
  2. 2.Microbial Biotechnology Research Center, Jeonbuk Branch InstituteKorea Research Institute of Bioscience and Biotechnology (KRIBB)Jeongeup-siRepublic of Korea
  3. 3.Department of BioindustryDaegu UniversityGyeongsanRepublic of Korea
  4. 4.Department of BiotechnologyDaegu UniversityGyeongsanRepublic of Korea
  5. 5.Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Halal Industrialization TechnologyChung-Ang UniversitySeoulRepublic of Korea

Personalised recommendations