Applied Biochemistry and Biotechnology

, Volume 184, Issue 4, pp 1263–1285 | Cite as

Effect of the Presence of Surfactants and Immobilization Conditions on Catalysts’ Properties of Rhizomucor miehei Lipase onto Chitosan

  • Ulisses M. F. de Oliveira
  • Leonardo J. B. Lima de Matos
  • Maria Cristiane M. de Souza
  • Bruna B. Pinheiro
  • José C. S. dos Santos
  • Luciana R. B. Gonçalves
Article

Abstract

Lipase from Rhizomucor miehei (RML) was immobilized onto chitosan support in the presence of some surfactants added at low levels using two different strategies. In the first approach, the enzyme was immobilized in the presence of surfactants on chitosan supports previously functionalized with glutaraldehyde. In the second one, after prior enzyme adsorption on chitosan beads in the presence of surfactants, the complex chitosan beads-enzyme was then cross-linked with glutaraldehyde. The effects of surfactant concentrations on the activities of free and immobilized RML were evaluated. Hexadecyltrimethylammonium bromide (CTAB) promoted an inhibition of enzyme activity while the nonionic surfactant Triton X-100 caused a slight increase in the catalytic activity of the free enzyme and the derivatives produced in both methods of immobilization. The best derivatives were achieved when the lipase was firstly adsorbed on chitosan beads at 4 °C for 1 h, 220 rpm followed by cross-link the complex chitosan beads-enzyme with glutaraldehyde 0.6% v.v−1 at pH 7. The derivatives obtained under these conditions showed high catalytic activity and excellent thermal stability at 60° and 37 °C. The best derivative was also evaluated in the synthesis of two flavor esters namely methyl and ethyl butyrate. At non-optimized conditions, the maximum conversion yield for methyl butyrate was 89%, and for ethyl butyrate, the esterification yield was 92%. The results for both esterifications were similar to those obtained when the commercial enzyme Lipozyme® and free enzyme were used in the same reaction conditions and higher than the one achieved in the absence of the selected surfactant.

Keywords

RML hyperactivation Surfactants Immobilization Chitosan Ester synthesis 

Notes

Acknowledgements

The authors would like to thank the Brazilian research-funding agencies FUNCAP, CNPq, and CAPES.

Supplementary material

12010_2017_2622_MOESM1_ESM.pptx (100 kb)
ESM 1 (PPTX 99 kb)

References

  1. 1.
    Zhang, Y., Dai, Y., Hou, M., Li, T., Ge, J., & Liu, Z. (2013). Chemo-enzymatic synthesis of valrubicin using Pluronic conjugated lipase with temperature responsiveness in organic media. RSC Advances, 3(45), 22963.  https://doi.org/10.1039/c3ra44879g.CrossRefGoogle Scholar
  2. 2.
    Hou, M., Wang, R., Wu, X., Zhang, Y., Ge, J., & Liu, Z. (2015). Synthesis of lutein esters by using a reusable lipase-Pluronic conjugate as the catalyst. Catalysis Letters, 145(10), 1825–1829.  https://doi.org/10.1007/s10562-015-1597-1.CrossRefGoogle Scholar
  3. 3.
    Li, Z., Zhang, Y., Lin, M., Ouyang, P., Ge, J., & Liu, Z. (2013). Lipase-catalyzed one-step and regioselective synthesis of clindamycin Palmitate. Organic Process Research & Development, 17(9), 1179–1182.  https://doi.org/10.1021/op400135y.CrossRefGoogle Scholar
  4. 4.
    Gharat, N., & Rathod, V. K. (2013). Enzyme catalyzed transesterification of waste cooking oil with dimethyl carbonate. Journal of Molecular Catalysis B: Enzymatic, 88, 36–40.  https://doi.org/10.1016/j.molcatb.2012.11.007.CrossRefGoogle Scholar
  5. 5.
    Villalba, M., Verdasco-Martín, C. M., dos Santos, J. C. S., Fernandez-Lafuente, R., & Otero, C. (2016). Operational stabilities of different chemical derivatives of Novozym 435 in an alcoholysis reaction. Enzyme and Microbial Technology, 90, 35–44.  https://doi.org/10.1016/j.enzmictec.2016.04.007.CrossRefGoogle Scholar
  6. 6.
    Palla, C. A., Pacheco, C., & Carrín, M. E. (2012). Production of structured lipids by acidolysis with immobilized Rhizomucor miehei lipases: selection of suitable reaction conditions. Journal of Molecular Catalysis B: Enzymatic, 76, 106–115.  https://doi.org/10.1016/j.molcatb.2011.11.022.CrossRefGoogle Scholar
  7. 7.
    Tornvall, U., Orellana-Coca, C., Hatti-Kaul, R., & Adlercreutz, D. (2007). Stability of immobilized Candida Antarctica lipase B during chemo-enzymatic epoxidation of fatty acids. Enzyme and Microbial Technology, 40(3), 447–451.  https://doi.org/10.1016/j.enzmictec.2006.07.019.CrossRefGoogle Scholar
  8. 8.
    Hasan, F., Shah, A. A., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39(2), 235–251.  https://doi.org/10.1016/j.enzmictec.2005.10.016.CrossRefGoogle Scholar
  9. 9.
    Gutierrez-Ayesta, C., Carelli, A. A., & Ferreira, M. L. (2007). Relation between lipase structures and their catalytic ability to hydrolyze triglycerides and phospholipids. Enzyme and Microbial Technology, 41(1–2), 35–43.  https://doi.org/10.1016/j.enzmictec.2006.11.018.CrossRefGoogle Scholar
  10. 10.
    Bezerra, R. M., Neto, D. M. A., Galvão, W. S., Rios, N. S., de Carvalho, A. C. L. M., Correa, M. A., et al. (2017). Design of a lipase-nano particle biocatalysts and its use in the kinetic resolution of medicament precursors. Biochemical Engineering Journal, 125, 104–115.  https://doi.org/10.1016/j.bej.2017.05.024.CrossRefGoogle Scholar
  11. 11.
    Manoel, E. A., dos Santos, J. C. S., Freire, D. M. G., Rueda, N., & Fernandez-Lafuente, R. (2015). Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme and Microbial Technology, 71, 53–57.  https://doi.org/10.1016/j.enzmictec.2015.02.001.CrossRefGoogle Scholar
  12. 12.
    dos Santos, J. C. S., Rueda, N., Barbosa, O., Fernández-Sánchez, J. F., Medina-Castillo, A. L., Ramón-Márquez, T., et al. (2015). Characterization of supports activated with divinyl sulfone as a tool to immobilize and stabilize enzymes via multipoint covalent attachment. Application to chymotrypsin. RSC Advances, 5(27), 20639–20649.  https://doi.org/10.1039/C4RA16926C.CrossRefGoogle Scholar
  13. 13.
    Rodrigues, D. S., Mendes, A. A., Adriano, W. S., Gonçalves, L. R. B., & Giordano, R. L. C. (2008). Multipoint covalent immobilization of microbial lipase on chitosan and agarose activated by different methods. Journal of Molecular Catalysis B: Enzymatic, 51(3–4), 100–109.  https://doi.org/10.1016/j.molcatb.2007.11.016.CrossRefGoogle Scholar
  14. 14.
    Silva, J. A., Macedo, G. P., Rodrigues, D. S., Giordano, R. L. C., & Gonçalves, L. R. B. (2012). Immobilization of Candida Antarctica lipase B by covalent attachment on chitosan-based hydrogels using different support activation strategies. Biochemical Engineering Journal, 60, 16–24.  https://doi.org/10.1016/j.bej.2011.09.011.CrossRefGoogle Scholar
  15. 15.
    dos Santos, J. C. S., Barbosa, O., Ortiz, C., Berenguer-Murcia, A., Rodrigues, R. C., & Fernandez-Lafuente, R. (2015). Importance of the support properties for immobilization or purification of enzymes. ChemCatChem, 7(16), 2413–2432.  https://doi.org/10.1002/cctc.201500310.CrossRefGoogle Scholar
  16. 16.
    Krajewska, B. (2004). Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology, 35(2), 126–139.  https://doi.org/10.1016/j.enzmictec.2003.12.013.CrossRefGoogle Scholar
  17. 17.
    Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2014). Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Advances, 4(207890), 1583.  https://doi.org/10.1039/c3ra45991h.CrossRefGoogle Scholar
  18. 18.
    Migneault, I., Dartiguenave, C., Bertrand, M. J., & Waldron, K. C. (2004). Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques, 37, 790–802.Google Scholar
  19. 19.
    Fernandez-Lafuente, R., Rosell, C. M., Rodriguez, V., & Guisan, J. M. (1995). Strategies for enzyme stabilization by intramolecular crosslinking with bifunctional reagents. Enzyme and Microbial Technology, 17(6), 517–523.  https://doi.org/10.1016/0141-0229(94)00090-E.CrossRefGoogle Scholar
  20. 20.
    Alvarez-Macarie, E., & Baratti, J. (2000). Short chain flavour ester synthesis by a new esterase from Bacillus licheniformis. Journal of Molecular Catalysis - B Enzymatic, 10(4), 377–383.  https://doi.org/10.1016/S1381-1177(99)00109-5.CrossRefGoogle Scholar
  21. 21.
    Salihu, A., Alam, M. Z., AbdulKarim, M. I., & Salleh, H. M. (2014). Esterification for butyl butyrate formation using Candida cylindracea lipase produced from palm oil mill effluent supplemented medium. Arabian Journal of Chemistry, 7(6), 1159–1165.  https://doi.org/10.1016/j.arabjc.2013.08.012.CrossRefGoogle Scholar
  22. 22.
    Hills, G. (2003). Industrial use of lipases to produce fatty acid esters. European Journal of Lipid Science and Technology, 105(10), 601–607.  https://doi.org/10.1002/ejlt.200300853.CrossRefGoogle Scholar
  23. 23.
    Escandell, J., Wurm, D. J. J., Belleville, M. P. P., Sanchez, J., Harasek, M., & Paolucci-Jeanjean, D. (2015). Enzymatic synthesis of butyl acetate in a packed bed reactor under liquid and supercritical conditions. Catalysis Today, 255, 3–9.  https://doi.org/10.1016/j.cattod.2015.01.048.CrossRefGoogle Scholar
  24. 24.
    Dubal, S. A., Tilkari, Y. P., Momin, S. A., & Borkar, I. V. (2008). Biotechnological routes in flavour industries. Review Literature And Arts Of The Americas, 14(March), 15.Google Scholar
  25. 25.
    Matte, C. R., Bordinhão, C., Poppe, J. K., Rodrigues, R. C., Hertz, P. F., & Ayub, M. A. Z. (2016). Synthesis of butyl butyrate in batch and continuous enzymatic reactors using Thermomyces lanuginosus lipase immobilized in Immobead 150. Journal of Molecular Catalysis B: Enzymatic, 127, 67–75.  https://doi.org/10.1016/j.molcatb.2016.02.016.CrossRefGoogle Scholar
  26. 26.
    Tufvesson, P., Törnvall, U., Carvalho, J., Karlsson, A. J., & Hatti-Kaul, R. (2011). Towards a cost-effective immobilized lipase for the synthesis of specialty chemicals. Journal of Molecular Catalysis B: Enzymatic, 68(2), 200–205.  https://doi.org/10.1016/j.molcatb.2010.11.004.CrossRefGoogle Scholar
  27. 27.
    Derewenda, Z. S., Derewenda, U., & Dodson, G. G. (1992). The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 Å resolution. Journal of Molecular Biology, 227(3), 818–839.  https://doi.org/10.1016/0022-2836(92)90225-9.CrossRefGoogle Scholar
  28. 28.
    Derewenda, Z. S., & Derewenda, U. (1991). Relationships among serine hydrolases: evidence for a common structural motif in triacylglyceride lipases and esterases. Biochemistry and Cell Biology, 69(12), 842–851.  https://doi.org/10.1139/o91-125.CrossRefGoogle Scholar
  29. 29.
    Rodrigues, R. C., & Fernandez-Lafuente, R. (2010). Lipase from Rhizomucor miehei as an industrial biocatalyst in chemical process. Journal of Molecular Catalysis B: Enzymatic, 64(1–2), 1–22.  https://doi.org/10.1016/j.molcatb.2010.02.003.CrossRefGoogle Scholar
  30. 30.
    Sheldon, R. A., Schoevaart, R., & Van Langen, L. M. (2006). Cross-linked enzyme aggregates. Methods in Biotechnology: Immobilization of Enzymes and Cells, 4, 31–45.  https://doi.org/10.4061/2011/851272.CrossRefGoogle Scholar
  31. 31.
    Fernández-Lorente, G., Palomo, J. M., Mateo, C., Munilla, R., Ortiz, C., Cabrera, Z., Guisán, J. M., & Fernandez-Lafuente, R. (2006). Glutaraldehyde cross-linking of lipases adsorbed on aminated supports in the presence of detergents leads to improved performance. Biomacromolecules, 7(9), 2610–2615.  https://doi.org/10.1021/bm060408+.CrossRefGoogle Scholar
  32. 32.
    Dos Santos, J. C. S., Bonazza, H. L., de Matos, L. J. B. L., Carneiro, E. A., Barbosa, O., Fernandez-Lafuente, R., Gonçalves, L. R. B., De Sant'Ana, H. B., & Santiago-Aguiar, R. S. (2017). Immobilization of CALB on activated chitosan: application to enzymatic synthesis in supercritical and near-critical carbon dioxide. Biotechnology Reports, 14, 16–26.  https://doi.org/10.1016/j.btre.2017.02.003.CrossRefGoogle Scholar
  33. 33.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.  https://doi.org/10.1016/0003-2697(76)90527-3.CrossRefGoogle Scholar
  34. 34.
    Sadana, A., & Henley, J. P. (1987). Analysis of enzyme deactivations by a series-type mechanism: influence of modification on the activity and stability of enzymes. Annals of the New York Academy of Sciences, 501, 73–79.CrossRefGoogle Scholar
  35. 35.
    Romero, M. D., Calvo, L., Alba, C., & Daneshfar, A. (2007). A kinetic study of isoamyl acetate synthesis by immobilized lipase-catalyzed acetylation in n-hexane. Journal of Biotechnology, 127(2), 269–277.  https://doi.org/10.1016/j.jbiotec.2006.07.009.CrossRefGoogle Scholar
  36. 36.
    Helistö, P., & Korpela, T. (1998). Effects of detergents on activity of microbial lipases as measured by the nitrophenyl alkanoate esters method. Enzyme and Microbial Technology, 23(1–2), 113–117.  https://doi.org/10.1016/S0141-0229(98)00024-6.CrossRefGoogle Scholar
  37. 37.
    Mogensen, J. E., Sehgal, P., & Otzen, D. E. (2005). Activation, inhibition, and destabilization of Thermomyces lanuginosus lipase by detergents. Biochemistry, 44(5), 1719–1730.  https://doi.org/10.1021/bi0479757.CrossRefGoogle Scholar
  38. 38.
    Bañó, M. C., González-Navarro, H., & Abad, C. (2003). Long-chain fatty acyl-CoA esters induce lipase activation in the absence of a water-lipid interface. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1632(1–3), 55–61.  https://doi.org/10.1016/S1388-1981(03)00061-1.CrossRefGoogle Scholar
  39. 39.
    Skagerlind, P., Jansson, M., Bergenståhl, B., & Hult, K. (1995). Binding of Rhizomucor miehei lipase to emulsion interfaces and its interference with surfactants. Colloids and Surfaces B: Biointerfaces, 4(3), 129–135.  https://doi.org/10.1016/0927-7765(94)01167-4.CrossRefGoogle Scholar
  40. 40.
    Fernandez-Lafuente, R., Armisén, P., Sabuquillo, P., Fernández-Lorente, G., Guisán, M., & J. (1998). Immobilization of lipases by selective adsorption on hydrophobic supports. Chemistry and Physics of Lipids, 93(1–2), 185–197.  https://doi.org/10.1016/S0009-3084(98)00042-5.CrossRefGoogle Scholar
  41. 41.
    Sánchez-Otero, M. G., Valerio-Alfaro, G., García-Galindo, H. S., & Oliart-Ros, R. M. (2008). Immobilization in the presence of Triton X-100: modifications in activity and thermostability of Geobacillus thermoleovorans CCR11 lipase. Journal of Industrial Microbiology and Biotechnology, 35(12), 1687–1693.  https://doi.org/10.1007/s10295-008-0433-7.CrossRefGoogle Scholar
  42. 42.
    Collins, S. E., Lassalle, V., & Ferreira, M. L. (2011). FTIR-ATR characterization of free Rhizomucor meihei lipase (RML), Lipozyme RM im and chitosan-immobilized RML. Journal of Molecular Catalysis B: Enzymatic, 72(3–4), 220–228.  https://doi.org/10.1016/j.molcatb.2011.06.009.CrossRefGoogle Scholar
  43. 43.
    Fernandez-Lorente, G., Palomo, J. M., Cabrera, Z., Fernandez-Lafuente, R., & Guisán, J. M. (2007). Improved catalytic properties of immobilized lipases by the presence of very low concentrations of detergents in the reaction medium. Biotechnology and Bioengineering, 97(2), 242–250.  https://doi.org/10.1002/bit.21230.CrossRefGoogle Scholar
  44. 44.
    Filice, M., Marciello, M., Betancor, L., Carrascosa, A. V, Guisan, J. M., & Fernandez-Lorente, G. (2011). Hydrolysis of fish oil by hyperactivated Rhizomucor miehei lipase immobilized by multipoint anion exchange. Biotechnology Progress, 27(4), 961–968.  https://doi.org/10.1002/btpr.635.
  45. 45.
    Adamczak, M., & Bednarski, W. (2004). Enhanced activity of intracellular lipases from Rhizomucor miehei and Yarrowia lipolytica by immobilization on biomass support particles. Process Biochemistry, 39(11), 1347–1361.  https://doi.org/10.1016/S0032-9592(03)00266-8.CrossRefGoogle Scholar
  46. 46.
    Rodrigues, R. C., & Fernandez-Lafuente, R. (2010). Lipase from Rhizomucor miehei as a biocatalyst in fats and oils modification. Journal of Molecular Catalysis B: Enzymatic.  https://doi.org/10.1016/j.molcatb.2010.03.008.
  47. 47.
    Romdhane, I., Ben, B., Romdhane, Z. B., Gargouri, A., & Belghith, H. (2011). Esterification activity and stability of Talaromyces thermophilus lipase immobilized onto chitosan. Journal of Molecular Catalysis B: Enzymatic, 68(3–4), 230–239.  https://doi.org/10.1016/j.molcatb.2010.11.010.CrossRefGoogle Scholar
  48. 48.
    Adriano, W. S., Mendonça, D. B., Rodrigues, D. S., Mammarella, E. J., & Giordano, R. L. C. (2008). Improving the properties of chitosan as support for the covalent multipoint immobilization of chymotrypsin. Biomacromolecules, 9(8), 2170–2179.  https://doi.org/10.1021/bm8002754.CrossRefGoogle Scholar
  49. 49.
    Barbosa, O., Torres, R., Ortiz, C., & Fernandez-Lafuente, R. (2012). The slow-down of the CALB immobilization rate permits to control the inter and intra molecular modification produced by glutaraldehyde. Process Biochemistry, 47(5), 766–774.  https://doi.org/10.1016/j.procbio.2012.02.009.CrossRefGoogle Scholar
  50. 50.
    Tardioli, P. W., Pedroche, J., Giordano, R. L. C., Fernández-Lafuente, R., & Guisán, J. M. (2003). Hydrolysis of proteins by immobilized-stabilized Alcalase-glyoxyl agarose. Biotechnology Progress, 19(2), 352–360.  https://doi.org/10.1021/bp025588n.CrossRefGoogle Scholar
  51. 51.
    Garcia-Galan, C., Dos Santos, J. C. S., Barbosa, O., Torres, R., Pereira, E. B., Corberan, V. C., GONÇALVES, L. R. B., & Fernandez-Lafuente, R. (2014). Tuning of Lecitase features via solid-phase chemical modification: Effect of the immobilization protocol. Process Biochemistry, 49(4), 604–616.  https://doi.org/10.1016/j.procbio.2014.01.028.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Ulisses M. F. de Oliveira
    • 1
  • Leonardo J. B. Lima de Matos
    • 1
  • Maria Cristiane M. de Souza
    • 2
  • Bruna B. Pinheiro
    • 1
  • José C. S. dos Santos
    • 2
  • Luciana R. B. Gonçalves
    • 1
  1. 1.Departamento de Engenharia QuímicaUniversidade Federal do CearáFortalezaBrazil
  2. 2.Instituto de Engenharias e Desenvolvimento SustentávelUniversidade da Integração Internacional da Lusofonia Afro-BrasileiraAcarapeBrazil

Personalised recommendations