Applied Biochemistry and Biotechnology

, Volume 184, Issue 4, pp 1120–1141 | Cite as

Identification and Characterization of Anthocyanin Biosynthesis-Related Genes in Kohlrabi

  • Md Abdur Rahim
  • Arif Hasan Khan Robin
  • Sathishkumar Natarajan
  • Hee-Jeong Jung
  • Jeongyeo Lee
  • HyeRan Kim
  • Hoy-Taek Kim
  • Jong-In Park
  • Ill-Sup Nou


Kohlrabi (Brassica oleracea var. gongylodes L.) is an important vegetable of the Brassicaceae family. The main edible part of kohlrabi is the swollen stem. The purple cultivars make anthocyanin mainly in the peel of the swollen stem, while in the leaf, it is limited to the midrib, but green cultivars do not. Anthocyanins are advantageous for both plants as well as humans. Two anthocyanin compounds were detected by high pressure liquid chromatography (HPLC) only in the peel of the purple kohlrabi cultivar. Three MYBs, three bHLHs, and one WD40 TF were identified as the candidate regulatory genes in kohlrabi. There was an abundance of transcript levels for the late biosynthetic genes more specifically for BoF3′H, BoDFR, BoLDOX, and BoGST in the purple peel while scarcely detectable in other tissues for both cultivars. The expression of BoPAP2 and BoTT8 was higher in the peel of the purple cultivar than the green cultivar. The expression of BoMYBL2.2 orthologue of Arabidopsis MYBL2, a negative regulator of anthocyanins, was dramatically decreased in the purple peel. The expression of BoACO1, a key gene for ethylene biosynthesis, and BoNCED3, an important gene of the ABA pathway, was down- and upregulated, respectively, in the peel of purple kohlrabi.


Anthocyanin MYB bHLH WD40 repeats Negative regulator Kohlrabi Biosynthetic genes HPLC Ethylene ABA 



arabidopsis aldehyde oxidase 3


abscisic acid


aminocyclopropane-1-carboxylateoxidase 1


basic helix-loop-helix


chalcone isomerase


chalcone synthase


dihydroflavonol 4-reductase


enhancer of glabra3


ethylene response sensor


ethylene receptor


flavanone 3-hydroxylase


flavonoid 3′-hydroxylase




glutathione S-transferase


high pressure liquid chromatography


leucoanthocyanidin dioxygenase


9-cis-epoxycarotenoid dioxygenase 3


production of anthocyanin pigment 1


production of anthocyanin pigment 1


quantitative reverse transcription polymerase chain reaction


transcription factor


transparent testa8


transparent testa glabra 1


UDP-flavonoid glucosyl transferase.


Funding Information

This research work was financially supported by the Golden Seed Project (Center for Horticultural Seed Development, Grant no. 213007-05-1-CG100) of the Ministry of Agriculture, Food and Rural affairs in the Republic of Korea (MAFRA).

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no competing interests.

Supplementary material

12010_2017_2613_MOESM1_ESM.jpg (1.1 mb)
ESM 1 (JPEG 1100 kb)
12010_2017_2613_MOESM2_ESM.docx (25 kb)
ESM 2 (DOCX 25 kb)
12010_2017_2613_MOESM3_ESM.docx (20 kb)
ESM 3 (DOCX 20 kb)
12010_2017_2613_MOESM4_ESM.docx (20 kb)
ESM 4 (DOCX 20 kb)
12010_2017_2613_MOESM5_ESM.docx (21 kb)
ESM 5 (DOCX 20 kb)
12010_2017_2613_MOESM6_ESM.xlsx (18 kb)
ESM 6 (XLSX 17 kb)
12010_2017_2613_MOESM7_ESM.xlsx (9 kb)
ESM 7 (XLSX 8 kb)


  1. 1.
    Miguel, M. (2011). Anthocyanins: antioxidant and/or anti-inflammatory activities. Journal of Applied Pharmaceutical Science, 1, 7–15.Google Scholar
  2. 2.
    Lin-Wang, K., Bolitho, K., Grafton, K., Kortstee, A., Karunairetnam, S., McGhie, T. K., Espley, R. V., Hellens, R. P., & Allan, A. C. (2010). An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biology, 10, 1–17.CrossRefGoogle Scholar
  3. 3.
    Rahim, M. A., Busatto, N., & Trainotti, L. (2014). Regulation of anthocyanin biosynthesis in peach fruits. Planta, 240, 913–929.CrossRefGoogle Scholar
  4. 4.
    Ryan, K. G., Swinny, E. E., Markham, K. R., & Winefield, C. (2002). Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry, 59, 23–32.CrossRefGoogle Scholar
  5. 5.
    Whitney, K. D., & Lister, C. E. (2004). Fruit colour polymorphism in Acacia ligulata: seed and seedling performance, clinal patterns, and chemical variation. Evolutionary Ecology, 18, 165–186.CrossRefGoogle Scholar
  6. 6.
    Petroni, K., & Tonelli, C. (2011). Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Science, 181, 219–229.CrossRefGoogle Scholar
  7. 7.
    Mazza, G., Kay, C. D., Cottrell, T., & Holub, B. J. (2002). Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. Journal of Agricultural and Food Chemistry, 50, 7731–7737.CrossRefGoogle Scholar
  8. 8.
    Yuan, Y., Chiu, L., & Li, L. (2009). Transcriptional regulation of anthocyanin biosynthesis in red cabbage. Planta, 230, 1141–1153.CrossRefGoogle Scholar
  9. 9.
    Tedesco, I., Russo, G. L., Nazzaro, F., Russo, M., & Palumbo, R. (2001). Antioxidant effect of red wine anthocyanins in normal and catalase-inactive human erythrocytes. The Journal of Nutritional Biochemistry, 12, 505–511.CrossRefGoogle Scholar
  10. 10.
    Lim, T. (2015). Brassica oleracea (Gongylodes group). In Edible medicinal and non medicinal plants (pp. 768–776). Dordrecht: Springer.Google Scholar
  11. 11.
    Choi, S., Ryu, D., Park, S., Ahn, K., Lim, Y., & An, G. (2010). Composition analysis between kohlrabi (Brassica oleracea var. gongylodes) and radish (Raphanus sativus). Korean Journal of Horticultural Science and Technology, 28, 469–475.Google Scholar
  12. 12.
    Zhang, Y., Hu, Z., Zhu, M., Zhu, Z., Wang, Z., Tian, S., & Chen, G. (2015). Anthocyanin accumulation and molecular analysis of correlated genes in purple kohlrabi (Brassica oleracea var. gongylodes L.) Journal of Agricultural and Food Chemistry, 63, 4160–4169.CrossRefGoogle Scholar
  13. 13.
    Winkel-Shirley, B. (2001). Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 126, 485–493.CrossRefGoogle Scholar
  14. 14.
    Vogt, T. (2010). Phenylpropanoid biosynthesis. Molecular Plant, 3, 2–20.CrossRefGoogle Scholar
  15. 15.
    Takos, A. M., Jaffe, F. W., Jacob, S. R., Bogs, J., Robinson, S. P., & Walker, A. R. (2006). Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology, 142, 1216–1232.CrossRefGoogle Scholar
  16. 16.
    Conn, S., Curtin, C., Bezier, A., Franco, C., & Zhang, W. (2008). Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. Journa of Expeerimental Botany, 59, 3621–3634.CrossRefGoogle Scholar
  17. 17.
    Espley, R. V., Hellens, R. P., Putterill, J., Stevenson, D. E., Kutty-Amma, S., & Allan, A. C. (2007). Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. The Plant Journal, 49, 414–427.CrossRefGoogle Scholar
  18. 18.
    Ban, Y., Honda, C., Hatsuyama, Y., Igarashi, M., Bessho, H., & Moriguchi, T. (2007). Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiology, 48, 958–970.CrossRefGoogle Scholar
  19. 19.
    Kobayashi, S., Ishimaru, M., Hiraoka, K., & Honda, C. (2002). Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta, 215, 924–933.CrossRefGoogle Scholar
  20. 20.
    He, F., Mu, L., Yan, G., Liang, N., Pan, Q., Wang, J., Reeves, M. J., & Duan, C. (2010). Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules, 15, 9057–9091.CrossRefGoogle Scholar
  21. 21.
    Mathews, H., Clendennen, S. K., Caldwell, C. G., Liu, X. L., Connors, K., Matheis, N., Schuster, D. K., Menasco, D. J., Wagoner, W., Lightner, J., & Wagner, D. R. (2003). Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell, 15, 1689–1703.CrossRefGoogle Scholar
  22. 22.
    Mano, H., Ogasawara, F., Sato, K., Higo, H., & Minobe, Y. (2007). Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiology, 143, 1252–1268.CrossRefGoogle Scholar
  23. 23.
    Shen, X., Zhao, K., Liu, L., Zhang, K., Yuan, H., Liao, X., Wang, Q., Guo, X., Li, F., & Li, T. (2014). A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (Prunus avium L.) Plant Cell Physiology, 55, 862–880.CrossRefGoogle Scholar
  24. 24.
    Schaart, J. G., Dubos, C., Romero De La Fuente, I., Houwelingen, A. M., Vos, R. C., Jonker, H. H., Xu, W., Routaboul, J., Lepiniec, L., & Bovy, A. G. (2013). Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria × ananassa) fruits. New Phytologist, 197, 454–467.CrossRefGoogle Scholar
  25. 25.
    Chiu, L., & Li, L. (2016). Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower. Planta, 236, 1153–1164.CrossRefGoogle Scholar
  26. 26.
    Lim, S., Song, J., Kim, D., Kim, J. K., Lee, J., Kim, Y., & Ha, S. (2016). Activation of anthocyanin biosynthesis by expression of the radish R2R3-MYB transcription factor gene RsMYB1. Plant Cell Reports, 35, 641–653.CrossRefGoogle Scholar
  27. 27.
    Gonzalez, A., Zhao, M., Leavitt, J. M., & Lloyd, A. M. (2008). Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal, 53, 814–827.CrossRefGoogle Scholar
  28. 28.
    Dubos, C., Le Gourrierec, J., Baudry, A., Huep, G., Lanet, E., Debeaujon, I., Routaboul, J., Alboresi, A., Weisshaar, B., & Lepiniec, L. (2008). MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. The Plant Journal, 55, 940–953.CrossRefGoogle Scholar
  29. 29.
    Stracke, R., Werber, M., & Weisshaar, B. (2001). The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology, 4, 447–456.CrossRefGoogle Scholar
  30. 30.
    Allan, A. C., Hellens, R. P., & Laing, W. A. (2008). MYB transcription factors that colour our fruit. Trends in Plant Science, 13, 99–102.CrossRefGoogle Scholar
  31. 31.
    Schwinn, K., Venail, J., Shang, Y., Mackay, S., Alm, V., Butelli, E., Oyama, R., Bailey, P., Davies, K., & Martin, C. (2006). A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell, 18, 831–851.CrossRefGoogle Scholar
  32. 32.
    Chiu, L. W., Zhou, X., Burke, S., Wu, X., Prior, R. L., & Li, L. (2010). The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiology, 154, 1470–1480.CrossRefGoogle Scholar
  33. 33.
    He, Q., Zhang, Z., & Zhang, L. (2015). Anthocyanin accumulation, antioxidant ability and stability, and a transcriptional analysis of anthocyanin biosynthesis in purple heading Chinese cabbage (Brassica rapa L. ssp. pekinensis). Journal of Agricultural and Food Chemistry, 64, 132–145.CrossRefGoogle Scholar
  34. 34.
    Matsui, K., Umemura, Y., & Ohme-Takagi, M. (2008). AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. The Plant Journal, 55, 954–967.CrossRefGoogle Scholar
  35. 35.
    Nesi, N., Debeaujon, I., Jond, C., Pelletier, G., Caboche, M., & Lepiniec, L. (2000). The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell, 12, 1863–1878.CrossRefGoogle Scholar
  36. 36.
    Bailey, P. C., Martin, C., Toledo-Ortiz, G., Quail, P. H., Huq, E., Heim, M. A., Jakoby, M., Werber, M., & Weisshaar, B. (2003). Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell, 15, 2497–2502.CrossRefGoogle Scholar
  37. 37.
    Feller, A., Machemer, K., Braun, E. L., & Grotewold, E. (2011). Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal, 66, 94–116.CrossRefGoogle Scholar
  38. 38.
    Goff, S. A., Cone, K. C., & Chandler, V. L. (1992). Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins. Genes & Development, 6, 864–875.CrossRefGoogle Scholar
  39. 39.
    Walker, A. R., Davison, P. A., Bolognesi-Winfield, A. C., James, C. M., Srinivasan, N., Blundell, T. L., Esch, J. J., Marks, M. D., & Gray, J. C. (1999). The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell, 11, 1337–1350.CrossRefGoogle Scholar
  40. 40.
    Carey, C. C., Strahle, J. T., Selinger, D. A., & Chandler, V. L. (2004). Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana. Plant Cell, 16, 450–464.CrossRefGoogle Scholar
  41. 41.
    Brueggemann, J., Weisshaar, B., & Sagasser, M. (2010). A WD40-repeat gene from Malus × domestica is a functional homologue of Arabidopsis thaliana TRANSPARENT TESTA GLABRA1. Plant Cell Reports, 29, 285–294.CrossRefGoogle Scholar
  42. 42.
    Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408.CrossRefGoogle Scholar
  43. 43.
    Mehrtens, F., Kranz, H., Bednarek, P., & Weisshaar, B. (2005). The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiology, 138, 1083–1096.CrossRefGoogle Scholar
  44. 44.
    Yu, J., Tehrim, S., Zhang, F., Tong, C., Huang, J., Cheng, X., Dong, C., Zhou, Y., Qin, R., & Hua, W. (2014). Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana. BMC Genomics, 15, 1.Google Scholar
  45. 45.
    Mushtaq, M. A., Pan, Q., Chen, D., Zhang, Q., Ge, X., & Li, Z. (2016). Comparative leaves transcriptome analysis emphasizing on accumulation of anthocyanins in Brassica: molecular regulation and potential interaction with photosynthesis. Frontiers in Plant Science, 7, 1–15.CrossRefGoogle Scholar
  46. 46.
    Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America, 95, 14863–14868.CrossRefGoogle Scholar
  47. 47.
    Saldanha, A. J. (2004). Java Treeview—extensible visualization of microarray data. Bioinformatics, 20, 3246–3248.CrossRefGoogle Scholar
  48. 48.
    Cheng, F., Sun, R., Hou, X., Zheng, H., Zhang, F., Zhang, Y., Liu, B., Liang, J., Zhuang, M., & Liu, Y. (2016). Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea. Nature Genetics, 48, 1218–1224.CrossRefGoogle Scholar
  49. 49.
    Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.CrossRefGoogle Scholar
  50. 50.
    Heppel, S. C., Jaffé, F. W., Takos, A. M., Schellmann, S., Rausch, T., Walker, A. R., & Bogs, J. (2013). Identification of key amino acids for the evolution of promoter target specificity of anthocyanin and proanthocyanidin regulating MYB factors. Plant Molecular Biology, 82, 457–471.CrossRefGoogle Scholar
  51. 51.
    Zimmermann, I. M., Heim, M. A., Weisshaar, B., & Uhrig, J. F. (2004). Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. The Plant Journal, 40, 22–34.CrossRefGoogle Scholar
  52. 52.
    Heim, M. A., Jakoby, M., Werber, M., Martin, C., Weisshaar, B., & Bailey, P. C. (2003). The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Molecular Biology and Evolution, 20, 735–747.CrossRefGoogle Scholar
  53. 53.
    Xiang, L., Liu, X., Li, X., Yin, X., Grierson, D., Li, F., & Chen, K. (2015). A novel bHLH transcription factor involved in regulating anthocyanin biosynthesis in chrysanthemums (Chrysanthemum morifolium Ramat.) PLoS One, 10, e0143892.CrossRefGoogle Scholar
  54. 54.
    Kitamura, S., Shikazono, N., & Tanaka, A. (2004). TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. The Plant Journal, 37, 104–114.CrossRefGoogle Scholar
  55. 55.
    Zhu, H., Fitzsimmons, K., Khandelwal, A., & Kranz, R. G. (2009). CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis. Molecular Plant, 2, 790–802.CrossRefGoogle Scholar
  56. 56.
    Zheng, K., Tian, H., Hu, Q., Guo, H., Yang, L., Cai, L., Wang, X., Liu, B., & Wang, S. (2016). Ectopic expression of R3 MYB transcription factor gene OsTCL1 in Arabidopsis, but not rice, affects trichome and root hair formation. Scientific Reports, 6, 19254.CrossRefGoogle Scholar
  57. 57.
    Das, P. K., Shin, D. H., Choi, S., & Park, Y. (2012). Sugar-hormone cross-talk in anthocyanin biosynthesis. Molecules and Cells, 34, 501–507.CrossRefGoogle Scholar
  58. 58.
    Jeong, S. W., Das, P. K., Jeoung, S. C., Song, J. Y., Lee, H. K., Kim, Y. K., Kim, W. J., Park, Y. I., Yoo, S. D., Choi, S. B., Choi, G., & Park, Y. I. (2010). Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis. Plant Physiology, 154, 1514–1531.CrossRefGoogle Scholar
  59. 59.
    Kim, J., Lee, B., Kim, S., Oh, K., & Cho, K. Y. (2006). Responses to environmental and chemical signals for anthocyanin biosynthesis in non-chlorophyllous corn (Zea mays L.) leaf. Journal of Plant Biology, 49, 16–25.CrossRefGoogle Scholar
  60. 60.
    Mori, K., Sato, H., Goto-Yamamoto, N., Kitayama, M., Kobayashi, S., Sugaya, S., Gemma, H., & Hashizume, K. (2015). Effects of abscisic acid treatment and night temperatures on anthocyanin composition in Pinot noir grapes. VITIS, Journal of Grapevine Research, 44, 161.Google Scholar
  61. 61.
    Govindaraj, M., Vetriventhan, M., & Srinivasan, M. (2015). Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics Research International, 2015, 1–14.CrossRefGoogle Scholar
  62. 62.
    Wu, X., & Prior, R. L. (2005). Identification and characterization of anthocyanins by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry in common foods in the United States: vegetables, nuts, and grains. Journal of Agricultural and Food Chemistry, 53, 3101–3113.CrossRefGoogle Scholar
  63. 63.
    Kong, J., Chia, L., Goh, N., Chia, T., & Brouillard, R. (2003). Analysis and biological activities of anthocyanins. Phytochemistry, 64, 923–933.CrossRefGoogle Scholar
  64. 64.
    Charron, C. S., Clevidence, B. A., Britz, S. J., & Novotny, J. A. (2007). Effect of dose size on bioavailability of acylated and nonacylated anthocyanins from red cabbage (Brassica oleracea L. var. capitata). Journal of Agricultural and Food Chemistry, 55, 5354–5362.CrossRefGoogle Scholar
  65. 65.
    Arapitsas, P., Sjöberg, P. J., & Turner, C. (2008). Characterisation of anthocyanins in red cabbage using high resolution liquid chromatography coupled with photodiode array detection and electrospray ionization-linear ion trap mass spectrometry. Food Chemistry, 109, 219–226.CrossRefGoogle Scholar
  66. 66.
    Park, W. T., Kim, J. K., Park, S., Lee, S., Li, X., Kim, Y. B., Uddin, M. R., Park, N. I., Kim, S., & Park, S. U. (2012). Metabolic profiling of glucosinolates, anthocyanins, carotenoids, and other secondary metabolites in kohlrabi (Brassica oleracea var. gongylodes). Journal of Agricultural and Food Chemistry, 60, 8111–8116.CrossRefGoogle Scholar
  67. 67.
    Yu, J., Zhao, M., Wang, X., Tong, C., Huang, S., Tehrim, S., Liu, Y., Hua, W., & Liu, S. (2013). Bolbase: a comprehensive genomics database for Brassica oleracea. BMC Genomics, 14, 1.CrossRefGoogle Scholar
  68. 68.
    Ahmed, N. U., Park, J., Jung, H., Yang, T., Hur, Y., & Nou, I. (2014). Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapa. Gene, 550, 6–55.CrossRefGoogle Scholar
  69. 69.
    Tohge, T., Nishiyama, Y., Hirai, M. Y., Yano, M., Nakajima, J., Awazuhara, M., Inoue, E., Takahashi, H., Goodenowe, D. B., & Kitayama, M. (2005). Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. The Plant Journal, 42, 218–235.CrossRefGoogle Scholar
  70. 70.
    Takada, K., Ishimaru, K., Minamisawa, K., Kamada, H., & Ezura, H. (2005). Expression of a mutated melon ethylene receptor gene Cm-ETR1/H69A affects stamen development in Nicotiana tabacum. Plant Science, 169, 935–942.CrossRefGoogle Scholar
  71. 71.
    Kang, B. G., & Burg, S. P. (1973). Role of ethylene in phytochrome-induced anthocyanin synthesis. Planta, 110, 227–235.CrossRefGoogle Scholar
  72. 72.
    Wei, Y., Hu, F., Hu, G., Li, X., Huang, X., & Wang, H. (2011). Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn. PLoS One, 6, e19455.CrossRefGoogle Scholar
  73. 73.
    Koyama, K., Sadamatsu, K., & Goto-Yamamoto, N. (2010). Abscisic acid stimulated ripening and gene expression in berry skins of the cabernet sauvignon grape. Functional & Integrative Genomics, 10, 367–381.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Md Abdur Rahim
    • 1
  • Arif Hasan Khan Robin
    • 1
  • Sathishkumar Natarajan
    • 1
  • Hee-Jeong Jung
    • 1
  • Jeongyeo Lee
    • 2
  • HyeRan Kim
    • 2
  • Hoy-Taek Kim
    • 1
  • Jong-In Park
    • 1
  • Ill-Sup Nou
    • 1
  1. 1.Department of HorticultureSunchon National UniversitySuncheonSouth Korea
  2. 2.Korea Research Institute of Bioscience and BiotechnologyDaejeonSouth Korea

Personalised recommendations