Skip to main content
Log in

Substrate Scope of O-Methyltransferase from Streptomyces peucetius for Biosynthesis of Diverse Natural Products Methoxides

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Methylation is a common post-modification reaction that is observed during the biosynthesis of secondary metabolites produced by plants and microorganisms. Based on the sequence information from Streptomyces peucetius ATCC27952, a putative O-methyltransferase (OMT) gene SpOMT7740 was polymerase chain reaction amplified and cloned into E. coli BL21 (DE3) host to test the substrate promiscuity and conduct functional characterization. In vitro and in vivo reaction assays were carried out over various classes of substrates: flavonoids (flavonol, flavones, and isoflavonoid), chalcones, anthraquinones, anthracyclines, and sterol molecules, and the applications in synthesizing diverse classes of O-methoxy natural products were also illustrated. SpOMT7740 catalyzed the O-methylation reaction to form various natural and non-natural O-methoxides, includes 7-hydroxy-8-O-methoxy flavone, 3-O-methoxy flavone, three mono-, di-, and tri-O-methoxy genistein, mono-O-methoxy phloretin, mono-O-methoxy luteolin, 3-O-methoxy β-sitosterol, and O-methoxy anthraquinones (emodin and aloe emodin) and O-methoxy anthracycline (daunorubicin) exhibiting diverse substrate flexibility. Daunorubicin is a native secondary metabolite of S. peucetius. Among the compounds tested, 7,8-dihydroxyflavone was the best substrate for bioconversion to 7-hydroxy-8-O-methoxy flavone, and it was structurally elucidated. This enzyme showed a flexible catalysis over the given ranges of temperature, pH, and divalent cationic conditions for O-methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Niraula, N. P., Kim, S. H., Sohng, J. K., & Kim, E. S. (2010). Biotechnological doxorubicin production: pathway and regulation engineering of strains for enhanced production. Applied Microbiology and Biotechnology, 87, 1187–1194.

    Article  CAS  Google Scholar 

  2. Watve, M. G., Tickoo, R., Jog, M. M., & Bhole, B. D. (2001). How many antibiotics are produced by the genus Streptomyces. Archives of Microbiology, 176, 386–390.

    Article  CAS  Google Scholar 

  3. Yoon, Y., Yi, Y. S., Lee, Y., Kim, S., Kim, B. G., Ahn, J. H., & Lim, Y. (2005). Characterization of O-methyltransferase ScOMT1 cloned from Streptomyces coelicolor A3(2). Biochimica et Biophysica Acta, 1730, 85–95.

    Article  CAS  Google Scholar 

  4. Choi, K. Y., Jung, E., Yang, Y. H., & Kim, B. G. (2013). Production of a novel O-methyl-isoflavone by regioselective sequential hydroxylation and O-methylation reactions in Streptomyces avermitilis host system. Biotechnology and Bioengineering, 110, 2591–2599.

    Article  CAS  Google Scholar 

  5. Olano, C., Mendez, C., & Salas, J. A. (2010). Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Natural Product Reports, 27, 571–616.

    Article  CAS  Google Scholar 

  6. Martin, J. L., & McMillan, F. M. (2002). SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Current Opinion in Structural Biology, 12, 783–793.

    Article  CAS  Google Scholar 

  7. Ibdah, M., Zhang, X. H., Schmidt, J., & Voqt, T. (2003). A novel Mg(2+)-dependent O-methyltransferase in the phenylpropanoid metabolism of mesembryanthemum crystallium. Journal of Biological Chemistry, 278, 43961–43972.

    Article  CAS  Google Scholar 

  8. NDong, C., Anzellotti, D., Ibrahim, R. K., Huner, N. P., & Sarhan, F. (2003). Daphnetin methylation by a novel O-methyltransferase is associated with cold acclimation and photosystem II excitation pressure in rye. Journal of Biological Chemistry, 278, 6854–6861.

    Article  CAS  Google Scholar 

  9. He, X. Z., Reddy, J. T., & Dixon, R. A. (1998). Stress responses in alfalfa (Medicago sativa L). XXII. cDNA cloning and characterization of an elicitor-inducible isoflavone 7-O-methyltransferase. Plant Molecular Biology, 36, 43–54.

    Article  CAS  Google Scholar 

  10. Winkel-Shirley, B. (2001). Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiology, 126, 485–493.

    Article  CAS  Google Scholar 

  11. Koirala, N., Pandey, R. P., Parajuli, P., Jung, H. J., & Sohng, J. K. (2014). Methylation and subsequent glycosylation of 7,8-dihydroxyflavone. Journal of Biotechnology, 184, 128–137.

    Article  CAS  Google Scholar 

  12. Kim, B. G., Jung, B. R., Lee, Y., Hur, H. G., Lim, Y., & Ahn, J. H. (2006). Regiospecific flavonoid 7-O-methylation with Streptomyces avermitilis O-methyltransferase expressed in Escherichia coli. Journal of Agricultural and Food Chemistry, 54, 823–828.

    Article  CAS  Google Scholar 

  13. Jnawali, H. N., Lee, E., Jeong, K. W., Shin, A., Heo, Y. S., & Kim, Y. (2014). Anti-inflammatory activity of rhamnetin and a model of its binding to c-Jun NH2-terminal kinase 1 and p38 MAPK. Journal of Natural Products, 77, 258–263.

    Article  CAS  Google Scholar 

  14. Hernandez, V., Recio, M. C., Menez, S., Giner, R. M., & Rios, J. L. (2007). Effects of naturally occurring dihydroflavonols from Inula viscosa on inflammation and enzymes involved in the arachidonic acid metabolism. Life Sciences, 81, 480–488.

    Article  CAS  Google Scholar 

  15. Zhang, L., Kong, Y., Zhang, H., Wu, H. J., Chen, J., Ding, J., Hu, L., Jiang, H., & Shen, X. (2008). Three flavonoids targeting the beta-hydroxyacyl-acyl carrier protein dehydratase from Helicobater pylori: Crystal structure characterization with enzymatic inhibition assay. Protein Science, 17, 1971–1978.

    Article  CAS  Google Scholar 

  16. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.

    Article  CAS  Google Scholar 

  17. Dereeper, A., Audic, S., Claverie, J. M., & Blanc, G. (2010). BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evolutionary Biology, 10, 8.

    Article  Google Scholar 

  18. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: a laboratory manual, 3rd ed. NY.

  19. Pandey, R. P., Gurung, R. B., Parajuli, P., Koirala, N., Tuoi Le, T., & Sohng, J. K. (2014). Assessing acceptor substrate promiscuity of YjiC-mediated glycosylation towards flavonoids. Carbohydrate Research, 393, 26–31.

    Article  CAS  Google Scholar 

  20. Parajuli, P., Pandey, R. P., Koirala, N., Yoon, Y. J., Kim, B. G., & Sohng, J. K. (2014). Enzymatic synthesis of epothilone A glycosides. AMB Express, 4, 31.

    Article  Google Scholar 

  21. Madduri, K., Torti, F., Colombo, A. L., & Hutchinson, C. R. (1993). Cloning and sequencing of a gene encoding carminomycin 4-O-methyltransferase from Streptomyces peucetius and its expression in E. coli. Journal of Bacteriology, 175, 3900–3904.

    Article  CAS  Google Scholar 

  22. Kim, N. Y., Kim, J. H., Lee, Y. H., Lee, E. J., Kim, J., Lim, Y., Chong, Y., & Ahn, J. H. (2007). O-methylation of flavonoids using DnrK based on molecular docking. Journal of Microbiology, 17, 1991–1995.

    CAS  Google Scholar 

  23. Grocholski, T., Dinis, P., Niiranen, L., Niemi, J., & Metsa-Ketela, M. (2015). Divergent evolution of a typical S-adenosyl- l -methionine-dependent monooxygenase involved in anthracycline biosynthesis. Proceeding of the National Academy of Sciences of the United States of America, 112, 98866-9871.

  24. Huber, T. D., Wang, F., Songh, S., Johnson, B. R., Zhang, J., Sunkara, M., Van Lanen, S. G., Morris, A. J., Phillips Jr., G. N., & Thorson, J. S. (2016). Functional AdoMet isosteres resistant to classical AdoMet degradation pathways. ACS Chemical Biology, 11, 2484–2491.

    Article  CAS  Google Scholar 

  25. Liu, W., Christenson, S. D., Standage, S., & Shen, B. (2002). Biosynthesis of the enedyne antitumor antibiotic C-1027. Science, 297, 1170–1173.

    Article  CAS  Google Scholar 

  26. Liu, W., Nonaka, K., Jie, L., Zhang, J., Christenson, S. D., Bae, J., Van Lanen, S. G., Zazopoulos, E., Farnet, C. M., Yang, C. F., & Shen, B. (2005). The neocarzinostatin biosynthetic gene cluster from Streptomyces carzinostaticus ATCC 15944 involving two iterative type I polyketide synthases. Chemical Biology, 12, 293–302.

    Article  CAS  Google Scholar 

  27. Chiang, C. M., Ding, H. Y., Tsai, Y. T., & Chang, T. S. (2015). Production of two novel methoxy-isoflavones from biotransformation of 8-hydroxydaidzein by recombinant E. coli expression O-methyltransferase SpOMT2884 from S. peucetius. International Journal of Molecular Sciences, 16, 27816–27823.

    Article  CAS  Google Scholar 

  28. Hortobagyi, G. N. (1997). Anthracyclines in the treatment of cancer. Drugs, 4, 1–7.

    Article  Google Scholar 

  29. Rivankar, S. (2014). An overview of doxorubicin formulations in cancer therapy. Journal of Cancer Research Therapeutics, 10, 853–858.

    Article  Google Scholar 

  30. Bansal, G., & Kaushik, D. (2015). Four new degredation products of doxorubicin: an application of forced degradation study and hyphenated chromatographic techniques. Journal of Pharmaceutical Analysis, 5, 285–295.

    Article  Google Scholar 

  31. Parajuli, P., Pandey, R. P., Trang, N. T., Chaudhary, A. K., & Sohng, J. K. (2015). Synthetic sugar cassettes for the efficient production of flavonol glycosides in Escherichia coli. Microbial Cell Factories, 14, 76.

    Article  Google Scholar 

  32. Pandey, R. P., Parajuli, P., Koffas, M. A., & Sohng, J. K. (2016). Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology. Biotechnology Advances, 34, 634–662.

    Article  CAS  Google Scholar 

  33. Dhar, K., & Rosazza, J. P. (2000). Purification and characterization of Streptomyces griseus catechol O-methyltransferase. Applied and Environmental Microbiology, 66, 4877–4882.

    Article  CAS  Google Scholar 

  34. Malla, S., Koffas, M. A., Kazlauskas, R. J., & Kim, B. G. (2012). Production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli. Applied and Environmental Microbiology, 78, 684–694.

    Article  CAS  Google Scholar 

  35. Zhang, Y., Han, M. Z., Zhu, S. L., Li, M., Dong, X., Kong, Z., Lu, Y. X., Wang, S. Y., & Tong, W. Y. (2015). Studies on the function and catalytic mechanism of O-methyltransferase SviOMT02, SviOMT03 and SviOMT06 from Streptomyces virginiae IBL14. Enzyme Microbial Technology, 74, 72–79.

    Google Scholar 

  36. Yoon, Y., Park, Y., Lee, Y., Yi, Y. S., Jo, G., Park, J. C., Ahn, J. H., & Lim, Y. (2010). Characterization of an O-methyltransferase from Streptomyces avermitilis MA-4680. Journal of Microbiology and Biotechnology, 20, 1359–1366.

    Article  CAS  Google Scholar 

  37. Jansson, A., Koskiniemi, H., Mantsala, P., Niemi, J., & Schneider, G. (2004). Crystal structure of a ternary complex of DnrK, a methyltransferase in daunorubicin biosynthesis, with bound products. Journal of Biological Chemistry, 279, 41149–41156.

    Article  CAS  Google Scholar 

Download references

Funding Information

This work was supported by a grant from the Next-Generation BioGreen 21 Program (SSAC, grant no.: PJ01111901), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kyung Sohng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interests.

Electronic supplementary material

ESM 1

(DOCX 1567 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parajuli, P., Pandey, R.P., Nguyen, T.H.T. et al. Substrate Scope of O-Methyltransferase from Streptomyces peucetius for Biosynthesis of Diverse Natural Products Methoxides. Appl Biochem Biotechnol 184, 1404–1420 (2018). https://doi.org/10.1007/s12010-017-2603-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2603-4

Keywords

Navigation