Skip to main content

Advertisement

Log in

Colorimetric Detection of Unamplified Rift Valley Fever Virus Genetic Material Using Unmodified Gold Nanoparticles

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Rift Valley fever virus (RVFV) is considered an enzootic virus in Africa. RVFV has caused several outbreaks in Egypt, sub-Saharan Africa and the Arabian Peninsula and is responsible for high mortality in ruminants and haemorrhagic fever in severe human cases. Although there are several molecular and serological diagnostic techniques used to detect this arthropod-borne virus with high sensitivity and efficiency, there is a need for a fast and reliable field screening test for rapid outbreak recording and containment. In this study, we developed a prototype point-of-care diagnostic test specific for RVFV detection using unmodified gold nanoparticles (AuNPs) that change colour in the presence of RVFV RNA, resulting in a simple but sensitive assay. The nanogold assay provides qualitative results showing the presence of the RVFV RNA in different sample types. The assay showed high accuracy and specificity, with a detection limit of 10 RNA copies/reaction, comparable with quantitative reverse transcription polymerase chain reaction. The assay result could be determined within 30 min with no need for specific detection instruments. To our knowledge, this is the first field test prototype to directly detect the RNA of RVFV without amplification using AuNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chevalier, V., Pépin, M., Plée, L., & Lancelot, R. (2010). Rift Valley fever—a threat for Europe? Eurosurveillance Edition, 15(10), 30-40 

  2. Elliott, R. M. (1997). Emerging viruses: the Bunyaviridae. Molecular Medicine, 3(9), 572–577.

    CAS  Google Scholar 

  3. Daubney, R., Hudson, J. R., & Garnham, P. C. (1931). Enzootic hepatitis or rift valley fever. An undescribed virus disease of sheep cattle and man from East Africa. The Journal of Pathology and Bacteriology, 34(4), 545–579. https://doi.org/10.1002/path.1700340418.

    Article  Google Scholar 

  4. Sayed-Ahmed, M. Z. (2015). Epidemic situation of Rift Valley fever in Egypt and Saudi Arabia. Journal of Dairy, Veterinary & Animal Research, 2(3), 23–25. https://doi.org/10.15406/jdvar.2015.02.00034.

    Article  Google Scholar 

  5. Madani, T. A., Al-Mazrou, Y. Y., Al-Jeffri, M. H., Mishkhas, A. A., Al-Rabeah, A. M., Turkistani, A. M., et al. (2003). Rift Valley fever epidemic in Saudi Arabia: epidemiological, clinical, and laboratory characteristics. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 37(8), 1084–1092. https://doi.org/10.1086/378747.

    Article  Google Scholar 

  6. Shaif, A. (2011). The epidemiology of rift valley fever in Yemen and the risk of re-introduction from the horn of Africa. L’épidémiologie de la fièvre de la vallée du Rift au Yemen, PhD thesis, University of Liège. Liège, Belgian

  7. Abdel-Wahab, K. S., El Baz, L. M., El-Tayeb, E. M., Omar, H., Ossman, M. A, & Yasin, W. (1978). Rift Valley Fever virus infections in Egypt: pathological and virological findings in man. Transactions of the Royal Society of Tropical Medicine and Hygiene, 72(4), 392–396. doi:http://dx.doi.org/10.1016/0035-9203(78)90134-7

  8. Ahmed Kamal, S., & Kamal, S. A. (2011). Observations on rift valley fever virus and vaccines in Egypt. Virology Journal, 8, 532. https://doi.org/10.1186/1743-422x-8-532.

    Article  Google Scholar 

  9. Ikegami, T., & Makino, S. (2011). The pathogenesis of rift valley fever. Virus, 3(5), 493–519. https://doi.org/10.3390/v3050493.

    Article  CAS  Google Scholar 

  10. Rift valley fever (RVF), transmission. 2013.  Avaliable from www.cdc.gov/vhf/rvf/transmission/index.html.

  11. Mansfield, K. L., Banyard, A. C., McElhinney, L., Johnson, N., Horton, D. L., Hernández-Triana, L. M., & Fooks, A. R. (2015). Rift Valley fever virus: a review of diagnosis and vaccination, and implications for emergence in Europe. Vaccine, 33(42), 5520–5531. https://doi.org/10.1016/j.vaccine.2015.08.020.

    Article  Google Scholar 

  12. Adam, A. A., Karsany, M. S., & Adam, I. (2010). Manifestations of severe Rift Valley fever in Sudan. International Journal of Infectious Diseases, 14(2), 179–180. https://doi.org/10.1016/j.ijid.2009.03.029.

    Article  Google Scholar 

  13. Mwaengo, D., Lorenzo, G., Iglesias, J., Warigia, M., Sang, R., Bishop, R. P., & Brun, A. (2012). Detection and identification of Rift Valley fever virus in mosquito vectors by quantitative real-time PCR. Virus Research, 169(1), 137–143. https://doi.org/10.1016/j.virusres.2012.07.019.

    Article  CAS  Google Scholar 

  14. Weidmann, M., Sanchez-Seco, M. P., Sall, A. A., Ly, P. O., Thiongane, Y., Lô, M. M., et al. (2008). Rapid detection of important human pathogenic phleboviruses. Journal of Clinical Virology, 41(2), 138–142. https://doi.org/10.1016/j.jcv.2007.10.001.

    Article  CAS  Google Scholar 

  15. Niklasson, B., Grandien, M., Peters, C. J., & Gargan, T. P. (1983). Detection of Rift Valley fever virus antigen by enzyme-linked immunosorbent assay. Egypt Journal of Clinical Microbiology, 17(6), 1026–1031.

    CAS  Google Scholar 

  16. Peyrefitte, C. N., Boubis, L., Coudrier, D., Bouloy, M., Grandadam, M., Tolou, H. J., & Plumet, S. (2008). Real-time reverse-transcription loop-mediated isothermal amplification for rapid detection of Rift Valley fever virus. Journal of Clinical Microbiology, 46(11), 3653–3659. https://doi.org/10.1128/JCM.01188-08.

    Article  CAS  Google Scholar 

  17. Euler, M., Wang, Y., Nentwich, O., Piepenburg, O., Hufert, F. T., & Weidmann, M. (2012). Recombinase polymerase amplification assay for rapid detection of Rift Valley fever virus. Journal of Clinical Virology, 54(4), 308–312. https://doi.org/10.1016/j.jcv.2012.05.006.

    Article  CAS  Google Scholar 

  18. Med, I. J., & Res, N. (2016). Nanoparticles: from diagnosis to therapy. International Journal of Medical Nano Research, 3(1), 1–5.

  19. Suri, S. S., Fenniri, H., & Singh, B. (2007). Nanotechnology-based drug delivery systems. Journal of Occupational Medicine and Toxicology, 6, 1–6. https://doi.org/10.1186/1745-6673-2-16.

    Google Scholar 

  20. Radwan, S. H., & Azzazy, H. M. (2009). Gold nanoparticles for molecular diagnostics. Expert Reviews, 9(5), 511–524.

    CAS  Google Scholar 

  21. Huang, X., & El-sayed, M. A. (2010). Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research, 1(1), 13–28. https://doi.org/10.1016/j.jare.2010.02.002.

  22. Shen, X., Jiang, L., Liang, H., Lu, X., Zhang, L., & Liu, X. (2006). Determination of 6-mercaptopurine based on the fluorescence enhancement of Au nanoparticles. Talanta, 69, 456–462. https://doi.org/10.1016/j.talanta.2005.10.017.

    Article  CAS  Google Scholar 

  23. Jin, R., Wu, G., Li, Z., Mirkin, C. A., & Schatz, G. C. (2003). What controls the melting properties of DNA-linked gold nanoparticle assemblies? Have been used as probes in a variety of DNA detection methods. Journal of the American Chemical Society, 25, 1643–1654.

    Article  Google Scholar 

  24. Li, H., & Rothberg, L. (2004). Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proceeding of the National Academy of Sciences of the United States of America, 101(39), 14036–14039.

    Article  CAS  Google Scholar 

  25. Shawky, S. M., Bald, D., & Azzazy, H. M. E. (2010). Direct detection of unamplified hepatitis C virus RNA using unmodified gold nanoparticles. Clinical Biochemistry, 43(13–14), 1163–1168. https://doi.org/10.1016/j.clinbiochem.2010.07.001.

    Article  CAS  Google Scholar 

  26. Verma, M. S., Rogowski, J. L., Jones, L., & Gu, F. X. (2015). Colorimetric biosensing of pathogens using gold nanoparticles. Biotechnology Advances. https://doi.org/10.1016/j.biotechadv.2015.03.003.

  27. Eissa, S., Shawky, S. M., Matboli, M., Mohamed, S., & Azzazy, H. M. E. (2014). Direct detection of unamplified hepatoma upregulated protein RNA in urine using gold nanoparticles for bladder cancer diagnosis. Clinical Biochemistry, 47(1–2), 104–110. https://doi.org/10.1016/j.clinbiochem.2013.10.022.

    Article  CAS  Google Scholar 

  28. Liu, Y., Zhang, L., Wei, W., Zhao, H., Zhou, Z., Zhang, Y., & Liu, S. (2015). Colorimetric detection of influenza A virus using antibody-functionalized gold nanoparticles. The Analyst, 140(12), 3989–3995. https://doi.org/10.1039/C5AN00407A.

    Article  CAS  Google Scholar 

  29. Liu, Y., Wei, M., Zhang, L., Zhang, Y., Wei, W., Yin, L., et al. (2016). Chiroplasmonic assemblies of gold nanoparticles for ultrasensitive detection of 8-hydroxy-2′-deoxyguanosine in human serum sample. Analytical Chemistry, 88(12), 6509–6514. https://doi.org/10.1021/acs.analchem.6b01258.

    Article  CAS  Google Scholar 

  30. Eissa, S., Azzazy, H. M. E., Matboli, M., Shawky, S. M., Said, H., & Anous, F. A. (2014). The prognostic value of histidine-rich glycoprotein RNA in breast tissue using unmodified gold nanoparticles assay. Applied Biochemistry and Biotechnology, 174(2), 751–761. https://doi.org/10.1007/s12010-014-1085-x.

    Article  CAS  Google Scholar 

  31. Frens, G. (1973). Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Physical Science, 241(105), 20–22. https://doi.org/10.1038/physci241020a0.

    Article  CAS  Google Scholar 

  32. Balasubramanian, S. K., Yang, L., Yung, L. L., Ong, C., & Ong, W. (2010). Biomaterials characterization, purification and stability of gold nanoparticles. Biomaterials, 31(34), 9023–9030. https://doi.org/10.1016/j.biomaterials.2010.08.012.

    Article  CAS  Google Scholar 

  33. Liu, X., Atwater, M., Wang, J., & Huo, Q. (2007). Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids and Surfaces B: Biointerfaces, 58, 3–7. https://doi.org/10.1016/j.colsurfb.2006.08.005.

    Article  CAS  Google Scholar 

  34. Garcia, S., Crance, J. M., Billecocq, A., Peinnequin, A., Jouan, A., Bouloy, M., & Garin, D. (2001). Quantitative real-time PCR detection of Rift Valley fever virus and its application to evaluation of antiviral compounds. Journal of Clinical Microbiology, 39(12), 4456–4461. https://doi.org/10.1128/JCM.39.12.4456.

    Article  CAS  Google Scholar 

  35. Liu, Z., Xia, X., Yang, C., & Wang, L. (2015). Visual detection of maize chlorotic mottle virus using unmodified gold nanoparticles. RSC Advances, 5, 100891–100897. https://doi.org/10.1039/C5RA16326A.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. James Allen from the AuthorAid organisation for extensive paper editing and language proofreading.

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa R. Zaher.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(DOCX 8144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaher, M.R., Ahmed, H.A., Hamada, K.E.Z. et al. Colorimetric Detection of Unamplified Rift Valley Fever Virus Genetic Material Using Unmodified Gold Nanoparticles. Appl Biochem Biotechnol 184, 898–908 (2018). https://doi.org/10.1007/s12010-017-2592-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2592-3

Keywords

Navigation