Skip to main content

Advertisement

Log in

Potential of Mangrove-Associated Endophytic Fungi for Production of Carbohydrolases with High Saccharification Efficiency

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The endophytic fungi represent a potential source of microorganisms for enzyme production. However, there have been only few studies exploiting their potential for the production of enzymes of industrial interest, such as the (hemi)cellulolytic enzymatic cocktail required in the hydrolysis of lignocellulosic biomass. Here, a collection of endophytic fungi isolated from mangrove tropical forests was evaluated for the production of carbohydrolases and performance on the hydrolysis of cellulose. For that, 41 endophytic strains were initially screened using a plate assay containing crystalline cellulose as the sole carbon source and the selected strains were cultivated under solid-state fermentation for endoglucanase, β-glucosidase, and xylanase enzyme quantification. The hydrolysis of a cellulosic material with the enzymes from endophytic strains of the Aspergillus genus resulted in glucose and conversion values more than twofold higher than the reference strains (Aspergillus niger F12 and Trichoderma reesei Rut-C30). Particularly, the enzymes from strains A. niger 56 (3) and A. awamori 82 (4) showed a distinguished saccharification performance, reaching cellulose conversion values of about 35% after 24 h. Linking hydrolysis performance to the screening steps played an important role towards finding potential fungal strains for producing enzymatic cocktails with high saccharification efficiency. These results indicate the potential of mangrove-associated endophytic fungi for production of carbohydrolases with efficient performance in the hydrolysis of biomass, thus contributing to the implementation of future biorefineries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Moshkelani, M., Marinova, M., Perrier, M., & Paris, J. (2013). The forest biorefinery and its implementation in the pulp and paper industry: energy overview. Applied Thermal Engineering, 50, 1427–1436.

    Article  CAS  Google Scholar 

  2. Sheldon, R. A. (2014). Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chemistry, 16, 950–963.

    Article  CAS  Google Scholar 

  3. Kamm, B., & Kamm, M. (2004). Principles of biorefineries. Applied Microbiology and Biotechnology, 64, 137–145.

    Article  CAS  Google Scholar 

  4. Mohan, S. V., Nikhil, G. N., Chiranjeevi, P., Reddy, C. N., Rohit, M. V., Kumar, A. N., & Sarkar, O. (2016). Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresource Technology, 215, 2–12.

    Article  Google Scholar 

  5. Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B. A., & Blanch, H. W. (2012). The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnology and Bioengineering, 109, 1083–1087.

    Article  CAS  Google Scholar 

  6. Johnson, E. (2016). Integrated enzyme production lowers the cost of cellulosic ethanol. Biofuels Bioproducts & Biorefining-Biofpr, 10, 164–174.

    Article  CAS  Google Scholar 

  7. Liu, G., Zhang, J., & Bao, J. (2016). Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling. Bioprocess and Biosystems Engineering, 39, 133–140.

    Article  Google Scholar 

  8. Delabona, P., Farinas, C., da Silva, M., Azzoni, S., & Pradella, J. (2012). Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugar cane bagasse for on-site cellulase production. Bioresource Technology, 107, 517–521.

    Article  CAS  Google Scholar 

  9. Cunha, F. M., Vasconcellos, V. M., Florencio, C., Badino, A. C., & Farinas, C. S. (2017). On-site production of enzymatic cocktails using a non-conventional fermentation method with agro-industrial residues as renewable feedstocks. Waste and Biomass Valorization, 8, 517–526.

    Article  CAS  Google Scholar 

  10. Pinto Braga, C. M., PdS, D., DJdS, L., Alvaredo Paixao, D. A., da Cruz Pradella, J. G., & Farinas, C. S. (2014). Addition of feruloyl esterase and xylanase produced on-site improves sugarcane bagasse hydrolysis. Bioresource Technology, 170, 316–324.

    Article  Google Scholar 

  11. Florencio C., Couri S., Farinas C.S. Correlation between agar plate screening and solid-state fermentation for the prediction of cellulase production by Trichoderma strains. In Enzyme Research. https://doi.org/10.1155/2012/793708

  12. Kovacs, K., Macrelli, S., Szakacs, G., & Zacchi, G. (2009). Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house. Biotechnology for Biofuels, 2, 11.

    Article  Google Scholar 

  13. Rodriguez-Zuniga, U. F., Couri, S., Neto, V. B., Crestana, S., & Farinas, C. S. (2013). Integrated strategies to enhance cellulolytic enzyme production using an instrumented bioreactor for solid-state fermentation of sugarcane bagasse. Bioenergy Research, 6, 142–152.

    Article  CAS  Google Scholar 

  14. Florencio, C., Cunha, F. M., Badino, A. C., & Farinas, C. S. (2015). Validation of a novel sequential cultivation method for the production of enzymatic cocktails from Trichoderma strains. Applied Biochemistry and Biotechnology, 175, 1389–1402.

    Article  CAS  Google Scholar 

  15. Payne, C. M., Knott, B. C., Mayes, H. B., Hansson, H., Himmel, M. E., Sandgren, M., Stahlberg, J., & Beckham, G. T. (2015). Fungal Cellulases. Chemical Reviews, 115, 1308–1448.

    Article  CAS  Google Scholar 

  16. Horn S.J., Vaaje-Kolstad G., Westereng B., Eijsink V.G.H. (2012). Novel enzymes for the degradation of cellulose. Biotechnology for Biofuels. https://doi.org/10.1186/1754-6834-5-45

  17. Lynd, L., Weimer, P., van Zyl, W., & Pretorius, I. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 506-+.

    Article  CAS  Google Scholar 

  18. van den Brink, J., & de Vries, R. P. (2011). Fungal enzyme sets for plant polysaccharide degradation. Applied Microbiology and Biotechnology, 91, 1477–1492.

    Article  CAS  Google Scholar 

  19. Makela, M. R., Donofrio, N., & de Vries, R. P. (2014). Plant biomass degradation by fungi. Fungal Genetics and Biology, 72, 2–9.

    Article  Google Scholar 

  20. Benocci, T., Aguilar-Pontes, M. V., Zhou, M., Seiboth, B., & de Vries, R. P. (2017). Regulators of plant biomass degradation in ascomycetous fungi. Biotechnology for Biofuels, 10, 25.

    Article  Google Scholar 

  21. Farinas, C. S. (2015). Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector. Renewable & Sustainable Energy Reviews, 52, 179–188.

    Article  CAS  Google Scholar 

  22. Florencio, C., Cunha, F. M., Badino, A. C., Farinas, C. S., Ximenes, E., & Ladisch, M. R. (2016). Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis. Enzyme and Microbial Technology, 90, 53–60.

    Article  CAS  Google Scholar 

  23. King, B. C., Waxman, K. D., Nenni, N. V., Walker, L. P., Bergstrom, G. C., & Gibson, D. M. (2011). Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnology for Biofuels, 4, 14.

    Article  Google Scholar 

  24. Delabona, P. D., Cota, J., Hoffmam, Z. B., Paixao, D. A. A., Farinas, C. S., Cairo, J., Lima, D. J., Squina, F. M., Ruller, R., & Pradella, J. G. D. (2013). Understanding the cellulolytic system of Trichoderma harzianum P49P11 and enhancing saccharification of pretreated sugarcane bagasse by supplementation with pectinase and alpha-L-arabinofuranosidase. Bioresource Technology, 131, 500–507.

    Article  Google Scholar 

  25. Robl, D., Delabona, P. D., Mergel, C. M., Rojas, J. D., Costa, P. D., Pimentel, I. C., Vicente, V. A., Pradella, J. G. D., & Padilla, G. (2013). The capability of endophytic fungi for production of hemicellulases and related enzymes. BMC Biotechnology, 13, 12.

    Article  Google Scholar 

  26. Souza, D. T., Bispo, A. S. R., Bon, E. P. S., Coelho, R. R. R., & Nascimento, R. P. (2012). Production of thermophilic endo-beta-1,4-xylanases by Aspergillus fumigatus FBSPE-05 using agro-industrial by-products. Applied Biochemistry and Biotechnology, 166, 1575–1585.

    Article  CAS  Google Scholar 

  27. Doria, E., Altobelli, E., Girometta, C., Nielsen, E., Zhang, T., & Savino, E. (2014). Evaluation of lignocellulolytic activities of ten fungal species able to degrade poplar wood. International Biodeterioration & Biodegradation, 94, 160-+.

    Article  CAS  Google Scholar 

  28. Sebastianes, F. L. D., RomaO-Dumaresq, A. S., Lacava, P. T., Harakava, R., Azevedo, J. L., de Melo, I. S., & Pizzirani-Kleiner, A. A. (2013). Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Current Genetics, 59, 153–166.

    Article  CAS  Google Scholar 

  29. Liu, J., Wang, X. C., HM, P., Liu, S., Kan, J., & Jin, C. H. (2017). Recent advances in endophytic exopolysaccharides: production, structural characterization, physiological role and biological activity. Carbohydrate Polymers, 157, 1113–1124.

    Article  CAS  Google Scholar 

  30. Correa, R. C. G., Rhoden, S. A., Mota, T. R., Azevedo, J. L., Pamphile, J. A., de Souza, C. G. M., Polizeli, M., Bracht, A., & Peralta, R. M. (2014). Endophytic fungi: expanding the arsenal of industrial enzyme producers. Journal of Industrial Microbiology & Biotechnology, 41, 1467–1478.

    Article  CAS  Google Scholar 

  31. Sebastianes, F. L. S., Azevedo, J. L., & Lacava, P. T. (2017). Diversity and biotechnological potential of endophytic microorganisms associated with tropical mangrove forests. Switzerland: Springer Nature.

    Book  Google Scholar 

  32. Dezam, A. P. G., Vasconcellos, V. M., Lacava, P. T., & Farinas, C. S. (2017). Microbial production of organic acids by endophytic fungi. Biocatalysis and Agricultural Biotechnology., 11, 282–287.

    Article  Google Scholar 

  33. Liu, Y. Y., Chen, S. H., Liu, Z. M., Lu, Y. J., Xia, G. P., Liu, H. J., He, L., & She, Z. G. (2015). Bioactive metabolites from mangrove endophytic fungus Aspergillus sp 16-5B. Marine Drugs, 13, 3091–3102.

    Article  CAS  Google Scholar 

  34. Farinas, C. S., Loyo, M. M., Baraldo Junior, A., Tardioli, P. W., Bertucci Neto, V., & Couri, S. (2010). Finding stable cellulase and xylanase evaluation of the synergistic effect of pH and temperature. New Biotechnology, 27, 810–815.

    Article  CAS  Google Scholar 

  35. Ghose, T. K. (1987). Measurement of cellulase activities. Pure & Appl. Chem., 59, 257–268.

    CAS  Google Scholar 

  36. Bailey, M. J., & Poutanen, K. (1989). Production of xylanolytic enzymes by strains of Aspergillus. Applied Microbiology and Biotechnology, 30, 5–10.

    Article  CAS  Google Scholar 

  37. Miller, G. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  38. Zhang, Y., Himmel, M., & Mielenz, J. (2006). Outlook for cellulase improvement: screening and selection strategies. Biotechnology Advances, 24, 452–481.

    Article  CAS  Google Scholar 

  39. de Vries, R. P., & Visser, J. (2001). Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiology and Molecular Biology Reviews, 65, 497-+.

    Article  Google Scholar 

  40. Delabona, P. D., Pirota, R., Codima, C. A., Tremacoldi, C. R., Rodrigues, A., & Farinas, C. S. (2013). Effect of initial moisture content on two Amazon rainforest Aspergillus strains cultivated on agro-industrial residues: biomass-degrading enzymes production and characterization. Industrial Crops and Products, 42, 236–242.

    Article  CAS  Google Scholar 

  41. Sorensen, A., Teller, P. J., Lubeck, P. S., & Ahring, B. K. (2011). Onsite enzyme production during bioethanol production from biomass: screening for suitable fungal strains. Applied Biochemistry and Biotechnology, 164, 1058–1070.

    Article  CAS  Google Scholar 

  42. Rodriguez-Zuniga, U., Farinas, C., Neto, V., Couri, S., & Crestana, S. (2011). Aspergillus niger production of cellulases by solid-state fermentation. Pesquisa Agropecuaria Brasileira, 46, 912–919.

    Article  Google Scholar 

  43. Gusakov, A. V. (2011). Alternatives to Trichoderma reesei in biofuel production. Trends in Biotechnology, 29, 419–425.

    Article  CAS  Google Scholar 

  44. Vasconcellos, V. M., Tardioli, P. W., Giordano, R. L. C., & Farinas, C. S. (2015). Production efficiency versus thermostability of (hemi)cellulolytic enzymatic cocktails from different cultivation systems. Process Biochemistry, 50, 1701–1709.

    Article  CAS  Google Scholar 

  45. Pirota, R., Tonelotto, M., Delabona, P. D., Fonseca, R. F., Paixao, D. A. A., Baleeiro, F. C. F., Neto, V. B., & Farinas, C. S. (2013). Enhancing xylanases production by a new Amazon forest strain of Aspergillus oryzae using solid-state fermentation under controlled operation conditions. Industrial Crops and Products, 45, 465–471.

    Article  CAS  Google Scholar 

  46. Rodriguez-Zuniga, U. F., Neto, V. B., Couri, S., Crestana, S., & Farinas, C. S. (2014). Use of spectroscopic and imaging techniques to evaluate pretreated sugarcane bagasse as a substrate for cellulase production under solid-state fermentation. Applied Biochemistry and Biotechnology, 172, 2348–2362.

    Article  CAS  Google Scholar 

  47. Delabona, P., Pirota, R., Codima, C., Tremacoldi, C., Rodrigues, A., & Farinas, C. (2012). Using Amazon forest fungi and agricultural residues as a strategy to produce cellulolytic enzymes. Biomass & Bioenergy, 37, 243–250.

    Article  CAS  Google Scholar 

  48. Florencio, C., Badino, A. C., & Farinas, C. S. (2016). Soybean protein as a cost-effective lignin-blocking additive for the saccharification of sugarcane bagasse. Bioresource Technology, 221, 172–180.

    Article  CAS  Google Scholar 

  49. Cunha, F. M., Badino, A. C., & Farinas, C. S. (2017). Effect of a novel method for in-house cellulase production on 2G ethanol yields. Biocatalysis and Agricultural Biotechnology, 9, 224–229.

    Article  Google Scholar 

  50. Singhania, R. R., Patel, A. K., Sukumaran, R. K., Larroche, C., & Pandey, A. (2013). Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresource Technology, 127, 500–507.

    Article  CAS  Google Scholar 

  51. de Giuseppe, P. O., Souza, T., Souza, F. H. M., Zanphorlin, L. M., Machado, C. B., Ward, R. J., Jorge, J. A., Furriel, R. D. M., & Murakami, M. T. (2014). Structural basis for glucose tolerance in GH1 beta-glucosidases. Acta Crystallographica Section D-Biological Crystallography, 70, 1631–1639.

    Article  Google Scholar 

  52. Longoni, P., Rodolfi, M., Pantaleoni, L., Doria, E., Concia, L., Picco, A. M., & Cella, R. (2012). Functional analysis of the degradation of cellulosic substrates by a Chaetomium globosum endophytic isolate. Applied and Environmental Microbiology, 78, 3693–3705.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Embrapa, CNPq (Process 401182/2014-2), CAPES, and FAPESP (Process 2004/13910-6, 2006/57060-1, 2014/19000-3, and 2016/10636-8) (all from Brazil) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Farinas.

Ethics declarations

Competing Interests

The authors declare they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maroldi, M.M.C., Vasconcellos, V.M., Lacava, P.T. et al. Potential of Mangrove-Associated Endophytic Fungi for Production of Carbohydrolases with High Saccharification Efficiency. Appl Biochem Biotechnol 184, 806–820 (2018). https://doi.org/10.1007/s12010-017-2590-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2590-5

Keywords

Navigation