Skip to main content

Advertisement

Log in

A Review of Hydrogen Production by Photosynthetic Organisms Using Whole-Cell and Cell-Free Systems

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Molecular hydrogen is a promising currency in the future energy economy due to the uncertain availability of finite fossil fuel resources and environmental effects from their combustion. It also has important uses in the production of fertilizers and platform chemicals as well as in upgrading conventional fuels. Conventional methods for producing molecular hydrogen from natural gas produce carbon dioxide and use a finite resource as feedstock. However, these issues can be overcome by using light energy from the Sun combined with microorganisms and their molecular machinery capable of photosynthesis. In the presence of light, the proteins involved in photosynthesis coupled with appropriate catalysts in higher plants, algae, and cyanobacteria can produce molecular hydrogen, and optimization via genetic modifications and biomolecular engineering further improves production rates. In this review, we will discuss techniques that have been utilized to improve rates of hydrogen production in biological systems based on the protein machinery of photosynthesis coupled with appropriate catalysts. We will also suggest areas for improvement and future directions for work in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hydrogen production: natural gas reforming Available from: https://energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming. Accessed 19 March 2017.

  2. Li, C. L., & Fang, H. H. P. (2007). Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Critical Reviews in Environmental Science and Technology, 37, 1–39.

    Article  Google Scholar 

  3. Iwuchukwu, I. J., Vaughn, M., Myers, N., O’Neill, H., Frymier, P., & Bruce, B. D. (2010). Self-organized photosynthetic nanoparticle for cell-free hydrogen production. Nature Nanotechnology, 5, 73–79.

    Article  CAS  Google Scholar 

  4. Pittam, D. A., & Pilcher, G. (1972). Measurements of heats of combustion by flame calorimetry. J. Chem. Soc. Faraday T., 1(68), 2224–2229.

    Article  Google Scholar 

  5. Barber, J. (2012). Photosystem II: the water-splitting enzyme of photosynthesis. Cold Spring Harbor Symposia on Quantitative Biology, 77, 295–307.

    Article  CAS  Google Scholar 

  6. Hydrogen storage Available from: https://energy.gov/eere/fuelcells/hydrogen-storage. Accessed 3 May 2017.

  7. Badura, A., Esper, B., Ataka, K., Grunwald, C., Woll, C., Kuhlmann, J., Heberle, J., & Rogner, M. (2006). Light-driven water splitting for (bio-)hydrogen production: photosystern 2 as the central part of a bioelectrochemical device. Photochemistry and Photobiology, 82, 1385–1390.

    Article  CAS  Google Scholar 

  8. Sandmann, G., & Boger, P. (1980). Copper-induced exchange of plastocyanin and cytochrome c-533 in cultures of Anabaena variabilis and Plectonema boryanum. Plant Science Letters, 17, 417–424.

    Article  CAS  Google Scholar 

  9. Diaz-Quintana, A., Navarro, J. A., Hervas, M., Molina-Heredia, F. P., De la Cerda, B., & De la Rosa, M. A. (2003). A comparative structural and functional analysis of cyanobacterial plastocyanin and cytochrome c6 as alternative electron donors to photosystem I. Photosynthesis Research, 75, 97–110.

    Article  CAS  Google Scholar 

  10. Hervas, M., Navarro, J. A., & De la Rosa, M. A. (2003). Electron transport between membrance complexes and soluble proteins in photosynthesis. Accounts of Chemical Research, 36, 798–805.

    Article  CAS  Google Scholar 

  11. Li, M., Semchonok, D. A., Boekema, E. J., & Bruce, B. D. (2014). Characterization and evolution of tetrametic photosystem I from the thermophilic cyanobacterium Chroococcidiopsis sp TS-821. Plant Cell, 26, 1230–1245.

    Article  CAS  Google Scholar 

  12. Mazor, Y., Borovikova, A., & Nelson, N. (2015). The structure of plant photosystem I super-complex at 2.8 angstrom resolution. eLife, 4, 18.

    Article  Google Scholar 

  13. Jordan, P., Fromme, P., Witt, H. T., Klukas, O., Saenger, W., & Krauss, N. (2001). Three-dimensional strucutre of cyanobacterial photosystem I at 2.5 A resolution. Nature, 411, 909–917.

    Article  CAS  Google Scholar 

  14. Busch, A., & Hippler, M. (2011). The structure and function of eukaryotic photosystem I. Biochim. Biophys. Acta-Bioenerg., 1807, 864–877.

    Article  CAS  Google Scholar 

  15. Jensen, P. E., Bassi, R., Boekema, E. J., Dekker, J. P., Jansson, S., Leister, D., Robinson, C., & Scheller, H. V. (2007). Structure, function and regulation of plant photosystem I. Biochim. Biophys. Acta-Bioenerg., 1767, 335–352.

    Article  CAS  Google Scholar 

  16. Grotjohann, I., & Fromme, P. (2005). Structure of cyanobacterial photosystem I. Photosynthesis Research, 85, 51–72.

    Article  CAS  Google Scholar 

  17. Nelson, N. (2008). Plant photosystem I—the most efficient nano-photochemical machine. Journal of Nanoscience and Nanotechnology, 8, 1–5.

    Article  Google Scholar 

  18. Golbeck, J. H. (1992). Structure and function of photosystem I. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 293–324.

    Article  CAS  Google Scholar 

  19. Lubitz, W. (2006). In J. H. Golbeck (Ed.), Photosystem I: the light-driven plastocyanin: ferredoxin oxidoreductase (Vol. 24, pp. 246–269). Dordrecht: Springer.

    Google Scholar 

  20. Chitnis, P. R., Purvis, D., & Nelson, N. (1991). Molecular cloning and targeted mutagenesis of the gene psaF endcoding subunit III of photosystem I from the cyanobacterium Synechocystis sp. PCC 6803. The Journal of Biological Chemistry, 266, 20146–20151.

    CAS  Google Scholar 

  21. Fromme, P., Schubert, W.-D., & Krauss, N. (1994). Structure of photosystem I: suggestions on the docking sites for plastocyanin, ferredoxin and the coordination of P700. Biochimica et Biophysica Acta, 1187, 99–105.

    Article  CAS  Google Scholar 

  22. Hippler, M., Reichert, J., Sutter, M., Zak, E., Altschmied, L., Schroer, U., Herrmann, R. G., & Haehnel, W. (1996). The plastocyanin binding domain of photosystem I. The EMBO Journal, 15, 6374–6384.

    CAS  Google Scholar 

  23. Semenov, A. Y., Petrova, A. A., Mamedov, M. D., & Nadtochenko, V. A. (2015). Electron transfer in photosystem I containing native and modified quinone acceptors. Biochemistry (Moscow), 80, 654–661.

    Article  CAS  Google Scholar 

  24. Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD—visual molecular dynamics. J. Molec. Graphics, 14, 33–38.

    Article  CAS  Google Scholar 

  25. Zilber, A. L., & Malkin, R. (1992). Organization and topology of photosystem I subunits. Plant Physiology, 99, 901–911.

    Article  CAS  Google Scholar 

  26. Lelong, C., Boekema, E. J., Kruip, J., Bottin, H., Rogner, M., & Setif, P. (1996). Characterization of a redox active corss-linked complex between cyanobacterial photosystem I and souble ferredoxin. The EMBO Journal, 15, 2160–2168.

    CAS  Google Scholar 

  27. Fritsch, J., Scheerer, P., Frielingsdorf, S., Kroschinsky, S., Friedrich, B., Lenz, O., & Spahn, C. M. T. (2011). The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre. Nature, 479, 249–253.

    Article  CAS  Google Scholar 

  28. Volbeda, A., Charon, M.-H., Piras, C., Hatchikian, E. C., Frey, M., & Fontecilla-Camps, J. C. (1995). Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature, 373, 580–587.

    Article  CAS  Google Scholar 

  29. Peters, J. W., Lanzilotta, W. N., Lemon, B. J., & Seefeldt, L. C. (1998). X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution. Science, 282, 1853–1858.

    Article  CAS  Google Scholar 

  30. Zirngibl, C., Vandongen, W., Schworer, B., Vonbunau, R., Richter, M., Klein, A., & Thauer, R. K. (1992). H2-forming methylenetetrahydromethanopterin dehydrognease, a novel type of hydrogenase without iron-sulfur clusters in methanogenic archaea. European Journal of Biochemistry, 208, 511–520.

    Article  CAS  Google Scholar 

  31. Vignais, P., & Billoud, B. (2007). Occurrence, classification, and biological function of hydrogenases: an overview. Chemical Reviews, 107, 4206–4272.

    Article  CAS  Google Scholar 

  32. Frey, M. (2002). Hydrogenases: hydrogen-activating enzymes. Chembiochem, 3, 153–160.

    Article  CAS  Google Scholar 

  33. Goldet, G., Brandmayr, C., Stripp, S. T., Happe, T., Cavazza, C., Fontecilla-Camps, J. C., & Armstrong, F. A. (2009). Electrochemical kinetic investigations of the reactions of [FeFe]-hydrogenases with carbon monoxide and oxygen: comparing the importance of gas tunnels and active-site electronic/redox effects. Journal of the American Chemical Society, 131, 14979–14989.

    Article  CAS  Google Scholar 

  34. Vincent, K. A., Parkin, A., Lenz, O., Albracht, S. P. J., Fontecilla-Camps, J. C., Cammack, R., Friedrich, B., & Armstrong, F. A. (2005). Electrochemical definitions of O2 sensitivity and oxidative inactivation in hydrogenases. Journal of the American Chemical Society, 127, 18179–18189.

    Article  CAS  Google Scholar 

  35. Koo, J., Shiigi, S., Rohovie, M., Mehta, K., & Swartz, J. R. (2016). Characterization of [FeFe] hydrogenase O2 sensitivity using a new, physiological approach. The Journal of Biological Chemistry, 291, 21563–21570.

    Article  CAS  Google Scholar 

  36. Goldet, G., Wait, A. F., Cracknell, J. A., Vincent, K. A., Ludwig, M., Lenz, O., Friedrich, B., & Armstrong, F. A. (2008). Hydrogen production under aerobic conditions by membrane-bound hydrogenases from Ralstonia species. Journal of the American Chemical Society, 130, 11106–11113.

    Article  CAS  Google Scholar 

  37. Burgdorf, T., De Lacey, A. L., & Friedrich, B. (2002). Functional analysis by site-directed mutagenesis of the NAD(+)-reducing hydrogenase from Ralstonia eutropha. Journal of Bacteriology, 184, 6280–6288.

    Article  CAS  Google Scholar 

  38. Reisner, E., Powell, D. J., Cavazza, C., Fontecilla-Camps, J. C., & Armstrong, F. A. (2009). Visible light-driven H2 production by hydrogenases attached to dye-sensitized TiO2 nanoparticles. Journal of the American Chemical Society, 131, 18457–18466.

    Article  CAS  Google Scholar 

  39. Kanai, T., Ito, S., & Imanaka, T. (2003). Characterization of a cytosolic NiFe-hydrogenase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Journal of Bacteriology, 185, 1705–1711.

    Article  CAS  Google Scholar 

  40. Ma, K. S., Weiss, R., & Adams, M. W. W. (2000). Characterization of hydrogenase II from the hyperthermophilic archaeon Pyrococcus furiosus and assessment of its role in sulfur reduction. Journal of Bacteriology, 182, 1864–1871.

    Article  CAS  Google Scholar 

  41. Maness, P.-C., Smolinski, S., Dillon, A. C., Heben, M. J., & Weaver, P. F. (2002). Characterization of the oxygen tolerance of a hydrogenase linked to a carbon monoxide oxidation pathway in Rubrivivax gelatinosus. Appl. Environ. Microb., 68, 2633–2636.

    Article  CAS  Google Scholar 

  42. Schnackenberg, J., Miyake, M., Miyake, J., Zorin, N. A., & Asada, Y. (1999). In vitro and in vivo coupling of Thiocapsa hydrogenase with cyanobacterial and algal electron mediators. Journal of Bioscience and Bioengineering, 88, 30–34.

    Article  CAS  Google Scholar 

  43. Cournac, L., Guedeney, G., Peltier, G., & Vignais, P. M. (2004). Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. Journal of Bacteriology, 186, 1737–1746.

    Article  CAS  Google Scholar 

  44. Peters, J. W., Schut, G. J., Boyd, E. S., Mulder, D. W., Shepard, E. M., Broderick, J. B., King, P. W., & Adams, M. W. (2015). [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochimica et Biophysica Acta, 1853, 1350–1369.

    Article  CAS  Google Scholar 

  45. Ihara, M., Nakamoto, H., Kamachi, T., Okura, I., & Maeda, M. (2006). Photoinduced hydrogen production by direct electron transfer from photosystem I cross-linked with cytochrome c3 to [NiFe]-hydrogenase. Photochemistry and Photobiology, 82, 1677–1685.

    Article  CAS  Google Scholar 

  46. Ihara, M., Nishihara, H., Yoon, K. S., Lenz, O., Friedrich, B., Nakamoto, H., Kojima, K., Honma, D., Kamachi, T., & Okura, I. (2006). Light-driven hydrogen production by a hybrid complex of a [NiFe]-hydrogenase and the cyanobacterial photosystem I. Photochemistry and Photobiology, 82, 676–682.

    Article  CAS  Google Scholar 

  47. Krassen, H., Schwarze, A., Friedrich, B., Ataka, K., Lenz, O., & Heberle, J. (2009). Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase. ACS Nano, 3, 4055–4061.

    Article  CAS  Google Scholar 

  48. Lubner, C. E., Applegate, A. M., Knorzer, P., Ganago, A., Bryant, D. A., Happe, T., & Golbeck, J. H. (2011). Solar hydrogen-producing bionanodevice outperforms natural photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 108, 20988–20991.

    Article  CAS  Google Scholar 

  49. Lubner, C. E., Knorzer, P., Silva, P. J., Vincent, K. A., Happe, T., Bryant, D. A., & Golbeck, J. H. (2010). Wiring an [FeFe]-hydrogenase with photosystem I for light-induced hydrogen production. Biochemistry, 49, 10264–10266.

    Article  CAS  Google Scholar 

  50. Mulder, D. W., Shepard, E. M., Meuser, J. E., Joshi, N., King, P. W., Posewitz, M. C., Broderick, J. B., & Peters, J. W. (2011). Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure, 19, 1038–1052.

    Article  CAS  Google Scholar 

  51. Ogata, H., Lubitz, W., & Higuchi, Y. (2016). Structure and function of [NiFe] hydrogenases. Journal of Biochemistry, 160, 251–258.

    Article  CAS  Google Scholar 

  52. Gaffron, H. (1939). Reduction of carbon dioxide with molecular hydrogen in green algae. Nature, 143, 204–205.

    Article  CAS  Google Scholar 

  53. Gaffron, H., & Rubin, J. (1942). Fermentative and photochemical production of hydrogen in algae. The Journal of General Physiology, 26, 219–240.

    Article  CAS  Google Scholar 

  54. Greenbaum, E. (1988). Energetic efficiency of hydrogen photoevolution by algal water splitting. Biophysical Journal, 54, 365–368.

    Article  CAS  Google Scholar 

  55. Bayro-Kaiser, V., & Nelson, N. (2016). Temperature-sensitive PSII: a novel approach for sustained photosynthetic hydrogen production. Photosynthesis Research, 130, 113–121.

    Article  CAS  Google Scholar 

  56. Kosourov, S., Tsygankov, A., Seibert, M., & Ghirardi, M. L. (2002). Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: effects of culture parameters. Biotechnology and Bioengineering, 78, 731–740.

    Article  CAS  Google Scholar 

  57. Melis, A., Zhang, L., Forestier, M., Ghirardi, M. L., & Seibert, M. (2000). Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiology, 122, 127–135.

    Article  CAS  Google Scholar 

  58. Meuser, J. E., Ananyev, G., Wittig, L. E., Kosourov, S., Ghirardi, M. L., Seibert, M., Dismukes, G. C., & Posewitz, M. C. (2009). Phenotypic diversity of hydrogen production in chlorophycean algae reflects distinct anaerobic metabolisms. Journal of Biotechnology, 142, 21–30.

    Article  CAS  Google Scholar 

  59. Pinto, T. S., Malcata, F. X., Arrabaca, J. D., Silva, J. M., Spreitzer, R. J., & Esquivel, M. G. (2013). Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production. Applied Microbiology and Biotechnology, 97, 5636–5643.

    Article  Google Scholar 

  60. Tolstygina, I. V., Antal, T. K., Kosourov, S. N., Krendeleva, T. E., Rubin, A. B., & Tsygankov, A. A. (2009). Hydrogen production by photoautotrophic sulfur-deprived Chlamydomonas reinhardtii pre-grown and incubated under high light. Biotechnology and Bioengineering, 102, 1055–1061.

    Article  CAS  Google Scholar 

  61. Safari, F., Norouzi, O., & Tavasoli, A. (2016). Hydrothermal gasification of Cladophora glomerata macroalgae over its hydrochar as a catalyst for hydrogen-rich gas production. Bioresource Technology, 222, 232–241.

    Article  CAS  Google Scholar 

  62. Happe, T., & Naber, J. D. (1993). Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. Eur. J. of Biochem., 214, 475–481.

    Article  CAS  Google Scholar 

  63. Schnackenberg, J., Schulz, R., & Senger, H. (1993). Characterization and purification of a hydrogenase from the eukaryotic green alga Scenedesmus obliquus. FEBS Letters, 327, 21–24.

    Article  CAS  Google Scholar 

  64. Benemann, J. R., Berenson, J. A., Kaplan, N. O., & Kamen, M. D. (1973). Hydrogen evolution by a chloroplast-ferredoxin-hydrogenase system. Proceedings of the National Academy of Sciences of the United States of America, 70, 2317–2320.

    Article  CAS  Google Scholar 

  65. Greenbaum, E. (1985). Platinized chloroplasts: a novel photocatalytic material. Science, 230, 1373.

    Article  CAS  Google Scholar 

  66. Hall, D. O., Adams, M. W. W., Morris, P., & Rao, K. K. (1980). Photolysis of water for H2 production with the use of biological and artificial catalysts. Philos. T. Roy. Soc. A, 295, 473–476.

    Article  CAS  Google Scholar 

  67. Rosen, M. M., & Krasna, A. I. (1980). Limiting reactions in hydrogen photoproduction by chloroplasts and hydrogenase. Photochemistry and Photobiology, 31, 259–265.

    Article  CAS  Google Scholar 

  68. McTavish, H. (1997). Hydrogen evolution by direct electron transfer from photosystem I to hydrogenases. Journal of Biochemistry, 123, 644–649.

    Article  Google Scholar 

  69. Grimme, R. A., Lubner, C. E., Bryant, D. A., & Golbeck, J. H. (2008). Photosystem I/molecular wire/metal nanoparticle bioconjugates for the photocatalytic production of H2. Journal of the American Chemical Society, 130, 6308–6309.

    Article  CAS  Google Scholar 

  70. Grimme, R. A., Lubner, C. E., & Golbeck, J. H. (2009). Maximizing H2 production in photosystem I/dithiol molecular wire/platinum nanoparticle bioconjugates. Dalton Transactions, 10106–10113.

  71. Benemann, J. R., & Weare, N. M. (1974). Hydrogen evolution by nitrogen-fixing Anabaena cylindrica cultures. Science, 184, 174–175.

    Article  CAS  Google Scholar 

  72. Jeffries, T. W., Timourian, H., & Ward, R. L. (1978). Hydrogen production by Anabaena cylindrica: effects of varying ammonium and ferric ions, pH, and light. Appl. Environ. Microb., 35, 704–710.

    CAS  Google Scholar 

  73. Tsygankov, A. A., Fedorov, A. S., Kosourov, S. N., & Rao, K. K. (2002). Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnology and Bioengineering, 80, 777–783.

    Article  CAS  Google Scholar 

  74. Harris, B. J., Cheng, X., & Frymier, P. (2016). Structure and function of photosystem I-[FeFe] hydrogenase protein fusion: an all-atom molecular dynamics study. The Journal of Physical Chemistry. B, 120, 599–609.

    Article  CAS  Google Scholar 

  75. Gorka, M., Schartner, J., van der Est, A., Rogner, M., & Golbeck, J. H. (2014). Light-mediated hydrogen generation in photosystem I: attachment of a naphthoquinone-molecular wire-Pt nanoparticle to the A1A and A1B sites. Biochemistry, 53, 2295–2306.

    Article  CAS  Google Scholar 

  76. Terasaki, N., Yamamoto, N., Hiraga, T., Yamanoi, Y., Yonezawa, T., Nishihara, H., Ohmori, T., Sakai, M., Fujii, M., Tohri, A., Iwai, M., Inoue, Y., Yoneyama, S., Minakata, M., & Enami, I. (2009). Plugging a molecular wire into photosystem I: reconstitution of the photoelectric conversion system on a gold electrode. Angewandte Chemie (International Ed. in English), 48, 1585–1587.

    Article  CAS  Google Scholar 

  77. Le, R. K., Raeeszadeh-Sarmazdeh, M., Boder, E. T., & Frymier, P. D. (2015). Sortase-mediated ligation of PsaE-modified photosystem I from Synechocystis sp. PCC 6803 to a conductive surface for enhanced photocurrent production on a gold electrode. Langmuir, 31, 1180–1188.

    Article  CAS  Google Scholar 

  78. Parthasarathy, R., Subramanian, S., & Boder, E. T. (2007). Sortase A as a novel molecular “stapler” for sequence-specific protein conjugation. Bioconjugate Chemistry, 18, 469–476.

    Article  CAS  Google Scholar 

  79. Levary, D. A., Parthasarathy, R., Boder, E. T., & Ackerman, M. E. (2011). Protein-protein fusion catalyzed by sortase A. PloS One, 6, 1–6.

    Article  Google Scholar 

  80. LeBlanc, G., Chen, G. P., Gizzie, E. A., Jennings, G. K., & Cliffel, D. E. (2012). Enhanced photocurrents of photosystem I films on p-doped silicon. Advanced Materials, 24, 5959.

    Article  CAS  Google Scholar 

  81. Iwuchukwu, I. J., Iwuchukwu, E., Le, R., Paquet, C., Sawhney, R., Bruce, B., & Frymier, P. (2011). Optimization of photosynthetic hydrogen yield from platinized photosystem I complexes using response surface methodology. International Journal of Hydrogen Energy, 36, 11684–11692.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for Baker Martin was provided by a fellowship from the GAANN program of the US Department of Education, Grant Number P200A150281.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul D. Frymier.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, B.A., Frymier, P.D. A Review of Hydrogen Production by Photosynthetic Organisms Using Whole-Cell and Cell-Free Systems. Appl Biochem Biotechnol 183, 503–519 (2017). https://doi.org/10.1007/s12010-017-2576-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2576-3

Keywords

Navigation