Skip to main content
Log in

Natural or Natural-Synthetic Hybrid Polymer-Based Fluorescent Polymeric Materials for Bio-imaging-Related Applications

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fluorescent polymeric materials such as hydrogels and particles have been attracting attention in many biomedical applications including bio-imaging, optical sensing, tissue engineering, due to their good biocompatibility, biodegradability, and advanced optical property. This review article aims at summarizing recent progress in fluorescent hydrogels and particles based on natural polymers or natural-synthetic hybrid polymers as the building blocks with a concentration on their bio-imaging-related applications. The challenges and future perspectives for the development of natural or natural-synthetic hybrid polymer-based fluorescent hydrogels and particles are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shen, W., Lammertink, R. G., Sakata, J. K., Kornfield, J. A., & Tirrell, D. A. (2005). Assembly of an artificial protein hydrogel through leucine zipper aggregation and disulfide bond formation. Macromolecules, 38, 3909–3916.

    Article  CAS  Google Scholar 

  2. Peppas, N. A., Hilt, J. Z., Khademhosseini, A., & Langer, R. (2006). Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Advanced Materials, 18, 1345–1360.

    Article  CAS  Google Scholar 

  3. Drury, J. L., & Mooney, D. J. (2003). Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 24, 4337–4351.

    Article  CAS  Google Scholar 

  4. Lee, K. Y., & Mooney, D. J. (2001). Hydrogels for tissue engineering. Chemical Reviews, 101, 1869–1880.

    Article  CAS  Google Scholar 

  5. Chen, J., Dong, Q., Ma, X., Fan, T.-H. and Lei, Y. (2016). Repetitive biomimetic self-healing of Ca2+−induced nanocomposite protein hydrogels. Scientific Reports, 6, Artcile# 30804.

  6. Chen, J., Ma, X., Dong, Q., Song, D., Hargrove, D., Vora, S. R., Ma, A. W., Lu, X., & Lei, Y. (2016). Self-healing of thermally-induced, biocompatible and biodegradable protein hydrogel. RSC Advances, 6, 56183–56192.

    Article  CAS  Google Scholar 

  7. Vermonden, T., Censi, R., & Hennink, W. E. (2012). Hydrogels for protein delivery. Chemical Reviews, 112, 2853–2888.

    Article  CAS  Google Scholar 

  8. Volodkin, D. V., von Klitzing, R., & Möhwald, H. (2010). Pure protein microspheres by calcium carbonate templating. Angewandte Chemie, 122, 9444–9447.

    Article  Google Scholar 

  9. Sivadas, N., O’Rourke, D., Tobin, A., Buckley, V., Ramtoola, Z., Kelly, J. G., Hickey, A. J., & Cryan, S.-A. (2008). A comparative study of a range of polymeric microspheres as potential carriers for the inhalation of proteins. International Journal of Pharmaceutics, 358, 159–167.

    Article  CAS  Google Scholar 

  10. Wei, W., Wang, L.-Y., Yuan, L., Wei, Q., Yang, X.-D., Su, Z.-G., & Ma, G.-H. (2007). Preparation and application of novel microspheres possessing autofluorescent properties. Advanced Functional Materials, 17, 3153–3158.

    Article  CAS  Google Scholar 

  11. Hanes, J., Chiba, M. and Langer, R. (1995) Polymer microspheres for vaccine delivery. ed. Springer.

  12. Lee, S. H., Heng, D., Ng, W. K., Chan, H.-K., & Tan, R. B. (2011). Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. International Journal of Pharmaceutics, 403, 192–200.

    Article  CAS  Google Scholar 

  13. Gülseren, İ., Fang, Y., & Corredig, M. (2012). Whey protein nanoparticles prepared with desolvation with ethanol: characterization, thermal stability and interfacial behavior. Food Hydrocolloids, 29, 258–264.

    Article  Google Scholar 

  14. Sundar, S., Kundu, J. and Kundu, S. C. (2010). Biopolymeric nanoparticles. Science and Technology of Advanced Materials, 11, Article# 014104.

  15. Lavis, L. D., & Raines, R. T. (2008). Bright ideas for chemical biology. ACS Chemical Biology, 3, 142–155.

    Article  CAS  Google Scholar 

  16. Qin, W., Ding, D., Liu, J., Yuan, W. Z., Hu, Y., Liu, B., & Tang, B. Z. (2012). Biocompatible nanoparticles with aggregation-induced emission characteristics as far-red/near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications. Advanced Functional Materials, 22, 771–779.

    Article  CAS  Google Scholar 

  17. Artzi, N., Oliva, N., Puron, C., Shitreet, S., Artzi, S., Bon Ramos, A., Groothuis, A., Sahagian, G., & Edelman, E. R. (2011). In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging. Nature Materials, 10, 704–709.

    Article  CAS  Google Scholar 

  18. Berdichevski, A., Yameen, H. S., Dafni, H., Neeman, M., & Seliktar, D. (2015). Using bimodal MRI/fluorescence imaging to identify host angiogenic response to implants. Proceedings of the National Academy of Sciences, 112, 5147–5152.

    Article  CAS  Google Scholar 

  19. Shibata, H., Heo, Y. J., Okitsu, T., Matsunaga, Y., Kawanishi, T., & Takeuchi, S. (2010). Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring. Proceedings of the National Academy of Sciences, 107, 17894–17898.

    Article  CAS  Google Scholar 

  20. Liu, W., Zhang, W., Yu, X., Zhang, G., & Su, Z. (2016). Synthesis and biomedical applications of fluorescent nanogels. Polymer Chemistry, 7, 5749–5762.

    Article  CAS  Google Scholar 

  21. Dong, X., Wei, C., Liu, T., & Lv, F. (2015). Protoporphyrin incorporated alginate hydrogel: preparation, characterization and fluorescence imaging in vivo. RSC Advances, 5, 96336–96344.

    Article  CAS  Google Scholar 

  22. Zhang, Y., Rossi, F., Papa, S., Violatto, M. B., Bigini, P., Sorbona, M., Redaelli, F., Veglianese, P., Hilborn, J., & Ossipov, D. A. (2016). Non-invasive in vitro and in vivo monitoring of degradation of fluorescently labeled hyaluronan hydrogels for tissue engineering applications. Acta Biomaterialia, 30, 188–198.

    Article  CAS  Google Scholar 

  23. Cabral, J. D., McConnell, M. A., Fitzpatrick, C., Mros, S., Williams, G., Wormald, P. J., Moratti, S. C., & Hanton, L. R. (2015). Characterization of the in vivo host response to a bi-labeled chitosan-dextran based hydrogel for postsurgical adhesion prevention. Journal of Biomedical Materials Research Part A, 103, 2611–2620.

    Article  CAS  Google Scholar 

  24. Wang, Z., Fan, X., He, M., Chen, Z., Wang, Y., Ye, Q., Zhang, H., & Zhang, L. (2014). Construction of cellulose–phosphor hybrid hydrogels and their application for bioimaging. Journal of Materials Chemistry B, 2, 7559–7566.

    Article  CAS  Google Scholar 

  25. Cui, W., Wang, A., Zhao, J., Yang, X., Cai, P., & Li, J. (2016). Layer by layer assembly of albumin nanoparticles with selective recognition of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Journal of Colloid and Interface Science, 465, 11–17.

    Article  CAS  Google Scholar 

  26. Cheng, J., Liu, Q., Shuhendler, A. J., Rauth, A. M., & Wu, X. Y. (2015). Optimizing the design and in vitro evaluation of bioreactive glucose oxidase-microspheres for enhanced cytotoxicity against multidrug resistant breast cancer cells. Colloids and Surfaces B: Biointerfaces, 130, 164–172.

    Article  CAS  Google Scholar 

  27. Hu, C., Feng, H., & Zhu, C. (2012). Preparation and characterization of rifampicin-PLGA microspheres/sodium alginate in situ gel combination delivery system. Colloids and Surfaces B: Biointerfaces, 95, 162–169.

    Article  CAS  Google Scholar 

  28. Wang, H., Di, J., Sun, Y., Fu, J., Wei, Z., Matsui, H., del C Alonso, A., & Zhou, S. (2015). Biocompatible PEG-chitosan@ carbon dots hybrid nanogels for two-photon fluorescence imaging, near-infrared light/pH dual-responsive drug carrier, and synergistic therapy. Advanced Functional Materials, 25, 5537–5547.

    Article  CAS  Google Scholar 

  29. Luppi, B., Bigucci, F., Cerchiara, T., & Zecchi, V. (2010). Chitosan-based hydrogels for nasal drug delivery: from inserts to nanoparticles. Expert Opinion on Drug Delivery, 7, 811–828.

    Article  CAS  Google Scholar 

  30. Junginger, H. E., & Verhoef, J. C. (1998). Macromolecules as safe penetration enhancers for hydrophilic drugs—a fiction? Pharmaceutical Science & Technology Today, 1, 370–376.

    Article  CAS  Google Scholar 

  31. Dördelmann, G., Kozlova, D., Karczewski, S., Lizio, R., Knauer, S., & Epple, M. (2014). Calcium phosphate increases the encapsulation efficiency of hydrophilic drugs (proteins, nucleic acids) into poly (d, l-lactide-co-glycolide acid) nanoparticles for intracellular delivery. Journal of Materials Chemistry B, 2, 7250–7259.

    Article  Google Scholar 

  32. Lin, J., Li, Y., Li, Y., Wu, H., Yu, F., Zhou, S., Xie, L., Luo, F., Lin, C., & Hou, Z. (2015). Drug/dye-loaded, multifunctional PEG–chitosan–iron oxide nanocomposites for methotraxate synergistically self-targeted cancer therapy and dual model imaging. ACS Applied Materials & Interfaces, 7, 11908–11920.

    Article  CAS  Google Scholar 

  33. Jheng, P.-R., Lu, K.-Y., Yu, S.-H., & Mi, F.-L. (2015). Free DOX and chitosan-N-arginine conjugate stabilized indocyanine green nanoparticles for combined chemophotothermal therapy. Colloids and Surfaces B: Biointerfaces, 136, 402–412.

    Article  CAS  Google Scholar 

  34. Sachdev, A., Matai, I., & Gopinath, P. (2016). Carbon dots incorporated polymeric hydrogels as multifunctional platform for imaging and induction of apoptosis in lung cancer cells. Colloids and Surfaces B: Biointerfaces, 141, 242–252.

    Article  CAS  Google Scholar 

  35. Bazylińska, U., & Saczko, J. (2016). Nanoemulsion-templated polylelectrolyte multifunctional nanocapsules for DNA entrapment and bioimaging. Colloids and Surfaces B: Biointerfaces, 137, 191–202.

    Article  Google Scholar 

  36. Raber, A., Mittal, A., Schäfer, J., Bakowsky, U., Reichrath, J., Vogt, T., Schaefer, U., Hansen, S., & Lehr, C.-M. (2014). Quantification of nanoparticle uptake into hair follicles in pig ear and human forearm. Journal of Controlled Release, 179, 25–32.

    Article  CAS  Google Scholar 

  37. Andrei, G., Peptu, C. A., Popa, M., Desbrieres, J., Peptu, C., Gardikiotis, F., Costuleanu, M., Costin, D., Dupin, J. C., & Uhart, A. (2015). Formulation and evaluation of cefuroxim loaded submicron particles for ophthalmic delivery. International Journal of Pharmaceutics, 493, 16–29.

    Article  CAS  Google Scholar 

  38. Jalani, G., Naccache, R., Rosenzweig, D. H., Haglund, L., Vetrone, F., & Cerruti, M. (2016). Photocleavable hydrogel coated upconverting nanoparticles: a multifunctional theranostic platform for NIR imaging and on-demand macromolecular delivery. Journal of the American Chemical Society, 138, 1078–1083.

    Article  CAS  Google Scholar 

  39. Gui, R., Wang, Y., & Sun, J. (2014). Embedding fluorescent mesoporous silica nanoparticles into biocompatible nanogels for tumor cell imaging and thermo/pH-sensitive in vitro drug release. Colloids and Surfaces B: Biointerfaces, 116, 518–525.

    Article  CAS  Google Scholar 

  40. Salis, A., Fanti, M., Medda, L., Nairi, V., Cugia, F., Piludu, M., Sogos, V., & Monduzzi, M. (2016). Mesoporous silica nanoparticles functionalized with hyaluronic acid and chitosan biopolymers. Effect of Functionalization on Cell Internalization. ACS Biomaterials Science & Engineering, 2, 741–751.

    Article  CAS  Google Scholar 

  41. Cheng, J., Tan, G., Li, W., Zhang, H., Wu, X., Wang, Z., & Jin, Y. (2016). Facile synthesis of chitosan assisted multifunctional magnetic Fe 3 O 4@ SiO 2@ CS@ pyropheophorbide-a fluorescent nanoparticles for photodynamic therapy. New Journal of Chemistry, 40, 8522–8534.

    Article  CAS  Google Scholar 

  42. Toman, P., Lien, C.-F., Ahmad, Z., Dietrich, S., Smith, J. R., An, Q., Molnár, É., Pilkington, G. J., Górecki, D. C., & Tsibouklis, J. (2015). Nanoparticles of alkylglyceryl-dextran-graft-poly (lactic acid) for drug delivery to the brain: preparation and in vitro investigation. Acta Biomaterialia, 23, 250–262.

    Article  CAS  Google Scholar 

  43. Dai, T., Zhou, S., Yin, C., Li, S., Cao, W., Liu, W., Sun, K., Dou, H., Cao, Y., & Zhou, G. (2014). Dextran-based fluorescent nanoprobes for sentinel lymph node mapping. Biomaterials, 35, 8227–8235.

    Article  CAS  Google Scholar 

  44. Bonnard, T., Serfaty, J.-M., Journé, C., Noe, B. H. T., Arnaud, D., Louedec, L., Derkaoui, S. M., Letourneur, D., Chauvierre, C., & Le Visage, C. (2014). Leukocyte mimetic polysaccharide microparticles tracked in vivo on activated endothelium and in abdominal aortic aneurysm. Acta Biomaterialia, 10, 3535–3545.

    Article  CAS  Google Scholar 

  45. Menzel, E., & Farr, C. (1998). Hyaluronidase and its substrate hyaluronan: biochemistry, biological activities and therapeutic uses. Cancer Letters, 131, 3–11.

    Article  CAS  Google Scholar 

  46. Wade, R. J., Bassin, E. J., Rodell, C. B. and Burdick, J. A. (2015) Protease-degradable electrospun fibrous hydrogels. Nature Communications, 6, Article#6639.

  47. Ossipov, D., Kootala, S., Yi, Z., Yang, X., & Hilborn, J. n. (2013). Orthogonal chemoselective assembly of hyaluronic acid networks and nanogels for drug delivery. Macromolecules, 46, 4105–4113.

    Article  CAS  Google Scholar 

  48. Zhang, L., Gao, S., Zhang, F., Yang, K., Ma, Q., & Zhu, L. (2014). Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy. ACS Nano, 8, 12250–12258.

    Article  CAS  Google Scholar 

  49. Park, J., Ku, M., Kim, E., Park, Y., Hong, Y., Haam, S., Cheong, J.-H., Park, E. S., Suh, J.-S., & Huh, Y.-M. (2013). CD44-specific supramolecular hydrogels for fluorescence molecular imaging of stem-like gastric cancer cells. Integrative Biology, 5, 669–672.

    Article  CAS  Google Scholar 

  50. Hwang, Y.-J., Larsen, J., Krasieva, T. B., & Lyubovitsky, J. G. (2011). Effect of genipin crosslinking on the optical spectral properties and structures of collagen hydrogels. ACS Applied Materials & Interfaces, 3, 2579–2584.

    Article  CAS  Google Scholar 

  51. zur Nieden, N. I., Turgman, C. C., Lang, X., Larsen, J. M., Granelli, J., Hwang, Y.-J., & Lyubovitsky, J. G. (2015). Fluorescent hydrogels for embryoid body formation and osteogenic differentiation of embryonic stem cells. ACS Applied Materials & Interfaces, 7, 10599–10605.

    Article  Google Scholar 

  52. Ma, X., Sun, X., Hargrove, D., Chen, J., Song, D., Dong, Q., Lu, X., Fan, T.-H., Fu, Y. and Lei, Y. (2016) A Biocompatible and biodegradable protein hydrogel with green and red autofluorescence: preparation, characterization and in vivo biodegradation tracking and modeling. Scientific Reports, 6, Article#19370.

  53. Deshapriya, I. K., Stromer, B. S., Pattammattel, A., Kim, C. S., Iglesias-Bartolome, R., Gonzalez-Fajardo, L., Patel, V., Gutkind, J. S., Lu, X., & Kumar, C. V. (2015). Fluorescent, bioactive protein nanoparticles (prodots) for rapid, improved cellular uptake. Bioconjugate Chemistry, 26, 396–404.

    Article  CAS  Google Scholar 

  54. Cui, Y., Wang, Y., & Zhao, L. (2015). Cysteine–Ag cluster hydrogel confirmed by experimental and numerical studies. Small, 11, 5118–5125.

    Article  CAS  Google Scholar 

  55. Wang, H., Mao, D., Wang, Y., Wang, K., Yi, X., Kong, D., Yang, Z., Liu, Q. and Ding, D. (2015) Biocompatible fluorescent supramolecular nanofibrous hydrogel for long-term cell tracking and tumor imaging applications. Scientific Reports, 5, Article#16680.

  56. Wang, Z., Zhang, Y., Zhang, J., Huang, L., Liu, J., Li, Y., Zhang, G., Kundu, S. C. and Wang, L. (2014) Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel. Scientific Reports, 4, Article#7064.

  57. Yang, Q., Wei, L., Zheng, X. and Xiao, L. (2015) Single particle dynamic imaging and Fe3+ sensing with bright carbon dots derived from bovine serum albumin proteins. Scientific Reports, 5, Article#17727.

  58. Liu, Z., Chen, N., Dong, C., Li, W., Guo, W., Wang, H., Wang, S., Tan, J., Tu, Y., & Chang, J. (2015). Facile construction of near infrared fluorescence nanoprobe with amphiphilic protein-polymer bioconjugate for targeted cell imaging. ACS Applied Materials & Interfaces, 7, 18997–19005.

    Article  CAS  Google Scholar 

  59. Yoon, H. K., Ray, A., Lee, Y.-E. K., Kim, G., Wang, X., & Kopelman, R. (2013). Polymer–protein hydrogel nanomatrix for stabilization of indocyanine green towards targeted fluorescence and photoacoustic bio-imaging. Journal of Materials Chemistry B, 1, 5611–5619.

    Article  CAS  Google Scholar 

  60. Omorphos, N. P., Kahn, L., & Kalaskar, D. M. (2015). Design of extracellular protein based particles for intra and extra-cellular targeting. Colloids and Surfaces B: Biointerfaces, 136, 440–448.

    Article  CAS  Google Scholar 

  61. Tang, Q., An, Y., Liu, D., Liu, P., & Zhang, D. (2014). Folate/NIR 797-conjugated albumin magnetic nanospheres: synthesis, characterisation, and in vitro and in vivo targeting evaluation. PloS One, 9, e106483.

    Article  Google Scholar 

  62. Gu, Y., Li, N., Gao, M., Wang, Z., Xiao, D., Li, Y., Jia, H., & He, H. (2015). Microwave-assisted synthesis of BSA-modified silver nanoparticles as a selective fluorescent probe for detection and cellular imaging of cadmium (II). Microchimica Acta, 182, 1255–1261.

    Article  CAS  Google Scholar 

  63. Chen, H., Li, S., Li, B., Ren, X., Li, S., Mahounga, D. M., Cui, S., Gu, Y., & Achilefu, S. (2012). Folate-modified gold nanoclusters as near-infrared fluorescent probes for tumor imaging and therapy. Nanoscale, 4, 6050–6064.

    Article  CAS  Google Scholar 

  64. Wang, C., Wang, C., Xu, L., Cheng, H., Lin, Q., & Zhang, C. (2014). Protein-directed synthesis of pH-responsive red fluorescent copper nanoclusters and their applications in cellular imaging and catalysis. Nanoscale, 6, 1775–1781.

    Article  CAS  Google Scholar 

  65. Niu, X., Chen, H., Wang, Y., Wang, W., Sun, X., & Chen, L. (2014). Upconversion fluorescence-SERS dual-mode tags for cellular and in vivo imaging. ACS Applied Materials & Interfaces, 6, 5152–5160.

    Article  CAS  Google Scholar 

  66. Sun, I. C., Eun, D. K., Koo, H., Ko, C. Y., Kim, H. S., Yi, D. K., Choi, K., Kwon, I. C., Kim, K., & Ahn, C. H. (2011). Tumor-targeting gold particles for dual computed tomography/optical cancer imaging. Angewandte Chemie International Edition, 50, 9348–9351.

    Article  CAS  Google Scholar 

  67. Ding, D., Li, K., Qin, W., Zhan, R., Hu, Y., Liu, J., Tang, B. Z., & Liu, B. (2013). Conjugated polymer amplified far-red/near-infrared fluorescence from nanoparticles with aggregation-induced emission characteristics for targeted in vivo imaging. Advanced Healthcare Materials, 2, 500–507.

    Article  CAS  Google Scholar 

  68. Lee, S. J., Koo, H., Lee, D.-E., Min, S., Lee, S., Chen, X., Choi, Y., Leary, J. F., Park, K., & Jeong, S. Y. (2011). Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system. Biomaterials, 32, 4021–4029.

    Article  CAS  Google Scholar 

  69. Kim, K., Kim, J. H., Park, H., Kim, Y.-S., Park, K., Nam, H., Lee, S., Park, J. H., Park, R.-W., & Kim, I.-S. (2010). Tumor-homing multifunctional nanoparticles for cancer theragnosis: simultaneous diagnosis, drug delivery, and therapeutic monitoring. Journal of Controlled Release, 146, 219–227.

    Article  CAS  Google Scholar 

  70. Wong, C., Stylianopoulos, T., Cui, J., Martin, J., Chauhan, V. P., Jiang, W., Popović, Z., Jain, R. K., Bawendi, M. G., & Fukumura, D. (2011). Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proceedings of the National Academy of Sciences, 108, 2426–2431.

    Article  CAS  Google Scholar 

  71. Na, J. H., Lee, S., Koo, H., Han, H., Lee, K. E., Han, S. J., Choi, S. H., Kim, H., Lee, S., & Kwon, I. C. (2016). T 1-weighted MR imaging of liver tumor by gadolinium-encapsulated glycol chitosan nanoparticles without non-specific toxicity in normal tissues. Nanoscale, 8, 9736–9745.

    Article  CAS  Google Scholar 

  72. Göpferich, A. (1996). Mechanisms of polymer degradation and erosion. Biomaterials, 17, 103–114.

    Article  Google Scholar 

  73. Lee, H., Cusick, R. A., Browne, F., Kim, T. H., Ma, P. X., Utsunomiya, H., Langer, R., & Vacanti, J. P. (2002). Local delivery of basic fibroblast growth factor increases both angiogenesis and engraftment of hepatocytes in tissue-engineered polymer devices1. Transplantation, 73, 1589–1593.

    Article  CAS  Google Scholar 

  74. Ifkovits, J. L., & Burdick, J. A. (2007). Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Engineering, 13, 2369–2385.

    Article  CAS  Google Scholar 

  75. Wang, W., Liu, J., Li, C., Zhang, J., Liu, J., Dong, A., & Kong, D. (2014). Real-time and non-invasive fluorescence tracking of in vivo degradation of the thermosensitive PEGlyated polyester hydrogel. Journal of Materials Chemistry B, 2, 4185–4192.

    Article  CAS  Google Scholar 

  76. Ma, X., Wang, T., Song, D., Hargrove, D., Dong, Q., Luo, Z., Chen, J., Lu, X., Luo, Y., & Fan, T.-H. (2016). Protein microspheres with unique green and red autofluorescence for noninvasively tracking and modeling their in vivo biodegradation. ACS Biomaterials Science & Engineering, 2, 954–962.

    Article  CAS  Google Scholar 

  77. Ma, X., Hargrove, D., Dong, Q., Song, D., Chen, J., Wang, S., Lu, X., Cho, Y. K., Fan, T.-H., & Lei, Y. (2016). Novel green and red autofluorescent protein nanoparticles for cell imaging and in vivo biodegradation imaging and modeling. RSC Advances, 6, 50091–50099.

    Article  CAS  Google Scholar 

  78. Tsong, T. Y. (1991). Electroporation of cell membranes. Biophysical Journal, 60, 297–306.

    Article  CAS  Google Scholar 

  79. Marsh, M., & McMahon, H. (1999). The structural era of endocytosis. Science, 285, 215–220.

    Article  CAS  Google Scholar 

  80. Xia, B., Wang, X., He, F., Cui, Q., & Li, L. (2012). Self-assembly of conjugated polymer on hybrid nanospheres for cellular imaging applications. ACS Applied Materials & Interfaces, 4, 6332–6337.

    Article  CAS  Google Scholar 

  81. Tzeng, Y. K., Faklaris, O., Chang, B. M., Kuo, Y., Hsu, J. H., & Chang, H. C. (2011). Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angewandte Chemie International Edition, 50, 2262–2265.

    Article  CAS  Google Scholar 

  82. Zhang, Y., Yue, X., Kim, B., Yao, S., Bondar, M. V., & Belfield, K. D. (2013). Bovine serum albumin nanoparticles with fluorogenic near-IR-emitting squaraine dyes. ACS Applied Materials & Interfaces, 5, 8710–8717.

    Article  CAS  Google Scholar 

  83. Sinha, V., & Trehan, A. (2003). Biodegradable microspheres for protein delivery. Journal of Controlled Release, 90, 261–280.

    Article  CAS  Google Scholar 

  84. Wagstaff, K. M., & Jans, D. A. (2007). Nucleocytoplasmic transport of DNA: enhancing non-viral gene transfer. Biochemical Journal, 406, 185–202.

    Article  CAS  Google Scholar 

  85. Khalil, I. A., Kogure, K., Akita, H., & Harashima, H. (2006). Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacological Reviews, 58, 32–45.

    Article  CAS  Google Scholar 

  86. Lu, Y., & Low, P. S. (2012). Folate-mediated delivery of macromolecular anticancer therapeutic agents. Advanced Drug Delivery Reviews, 64, 342–352.

    Article  Google Scholar 

  87. Wang, M., Hu, H., Sun, Y., Qiu, L., Zhang, J., Guan, G., Zhao, X., Qiao, M., Cheng, L., & Cheng, L. (2013). A pH-sensitive gene delivery system based on folic acid-PEG-chitosan–PAMAM-plasmid DNA complexes for cancer cell targeting. Biomaterials, 34, 10120–10132.

    Article  CAS  Google Scholar 

  88. Guan, X., Hu, X., Cui, F., Li, Y., Jing, X., & Xie, Z. (2015). EGFP-based protein nanoparticles with cell-penetrating peptide for efficient siRNA delivery. Macromolecular Bioscience, 15, 1484–1489.

    Article  CAS  Google Scholar 

  89. Mönkäre, J., Nejadnik, M. R., Baccouche, K., Romeijn, S., Jiskoot, W., & Bouwstra, J. A. (2015). IgG-loaded hyaluronan-based dissolving microneedles for intradermal protein delivery. Journal of Controlled Release, 218, 53–62.

    Article  Google Scholar 

  90. Yao, J., Yang, M., & Duan, Y. (2014). Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chemical Reviews, 114, 6130–6178.

    Article  CAS  Google Scholar 

  91. Song, X., Liang, C., Gong, H., Chen, Q., Wang, C., & Liu, Z. (2015). Photosensitizer-conjugated albumin−polypyrrole nanoparticles for imaging-guided in vivo photodynamic/photothermal therapy. Small, 11, 3932–3941.

    Article  CAS  Google Scholar 

  92. Wen, Y., Dong, H., Li, Y., Shen, A., & Li, Y. (2016). Nano-assembly of bovine serum albumin driven by rare-earth-ion (Gd) biomineralization for highly efficient photodynamic therapy and tumor imaging. Journal of Materials Chemistry B, 4, 743–751.

    Article  CAS  Google Scholar 

  93. Han, J., Xia, H., Wu, Y., Kong, S. N., Deivasigamani, A., Xu, R., Hui, K. M., & Kang, Y. (2016). Single-layer MoS 2 nanosheet grafted upconversion nanoparticles for near-infrared fluorescence imaging-guided deep tissue cancer phototherapy. Nanoscale, 8, 7861–7865.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the National Science Foundation (NSF). Jun Chen acknowledges the financial support from GE Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Lei.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Sun, X., Chen, J. et al. Natural or Natural-Synthetic Hybrid Polymer-Based Fluorescent Polymeric Materials for Bio-imaging-Related Applications. Appl Biochem Biotechnol 183, 461–487 (2017). https://doi.org/10.1007/s12010-017-2570-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2570-9

Keywords

Navigation