Skip to main content
Log in

Metagenome Analysis: a Powerful Tool for Enzyme Bioprospecting

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microorganisms are found throughout every corner of nature, and vast number of microorganisms is difficult to cultivate by classical microbiological techniques. The advent of metagenomics has revolutionized the field of microbial biotechnology. Metagenomics allow the recovery of genetic material directly from environmental niches without any cultivation techniques. Currently, metagenomic tools are widely employed as powerful tools to isolate and identify enzymes with novel biocatalytic activities from the uncultivable component of microbial communities. The employment of next-generation sequencing techniques for metagenomics resulted in the generation of large sequence data sets derived from various environments, such as soil, the human body and ocean water. This review article describes the state-of-the-art techniques and tools in metagenomics and discusses the potential of metagenomic approaches for the bioprospecting of industrial enzymes from various environmental samples. We also describe the unusual novel enzymes discovered via metagenomic approaches and discuss the future prospects for metagenome technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adrio, J. L., & Demain, A. L. (2003). Fungal biotechnology. International Microbiology, 6(3), 191–199.

    Article  CAS  Google Scholar 

  2. Mackenzie, A. K., Naas, A. E., Kracun, S. K., Schückel, J., Fangel, J. U., Agger, J. W., et al. (2015). A polysaccharide utilization locus from an uncultured bacteroidetes phylotype suggests ecological adaptation and substrate versatility. Applied and Environmental Microbiology, 8(1), 187–195.

    Article  CAS  Google Scholar 

  3. Alcalde, M., Ferrer, M., Plou, F. J., & Ballesteros, A. (2006). Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends in Biotechnology, 24(6), 281–287.

    Article  CAS  Google Scholar 

  4. Amann, R. J., Binder, B. L., Chisholm, S. W., Devereux, R., & Stahl, D. A. (1990). Combination of 16S rRNA targeted oligonucleotide probes with flow cytometry for analysing mixed microbial populations. Applied and Environmental Microbiology, 56(6), 1910–1925.

    Google Scholar 

  5. Biddle, J. F., Fitz-Gibbon, S., Schuster, S. C., Brenchley, J. E., & House, C. H. (2008). Metagenomic signatures of the Peru Margin subseafloor biosphereshow a genetically distinct environment. Proceeding of the National Academy of Sciences of the United States of America, 105(30), 10583–10588.

    Article  CAS  Google Scholar 

  6. Tringe, S. G., von Mering, C., Kobayashi, A., Salamov, A. A., Chen, K., Chang, H. W., et al. (2005). Comparative metagenomics of microbial communities. Science, 308(5721), 554–557.

    Article  CAS  Google Scholar 

  7. Mai, Z., Su, H., Yang, J., Huang, S., & Zhang, S. (2014). Cloning and characterization of a novel GH44 family endoglucanase from mangrove soil metagenomic library. Biotechnology Letters, 36(8), 1701–1709.

    Article  CAS  Google Scholar 

  8. Yang, C., Xia, Y., Qu, H., Li, A., Liu, R., Wang, Y., & Zhang, T. (2016). Discovery of new cellulases from the metagenome by a metagenomics guided strategy. Biotechnology for Biofuels, 9, 138.

    Article  Google Scholar 

  9. Simon, C., & Daniel, R. (2010). Construction of small-insert and large insert metagenomic libraries. Methods in Molecular Biology, 668, 39–50.

    Article  CAS  Google Scholar 

  10. Steele, H. L., Jaeger, K. E., Daniel, R., & Streit, W. R. (2009). Advances in recovery of novel biocatalysts from metagenomes. Journal of Molecular Microbiology and Biotechnology, 16, 25–37.

    Article  CAS  Google Scholar 

  11. Daniel, R. (2005). The metagenomics of soil. Nature Reviews in Microbiology, 3(6), 470–478.

    Article  CAS  Google Scholar 

  12. Lam, K. N., Cheng, J., Engel, K., Neufeld, J. D., & Charles, T. C. (2015). Current and future resources for functional metagenomics. Frontiers in Microbiology, 6, 1196.

    Article  Google Scholar 

  13. Escobar-Zepeda, A., Vera-Ponce de León, A., & Sanchez-Flores, A. (2015). The road to metagenomics: from microbiology to DNA sequencing technologies and bioinformatics. Frontiers in Genetics, 6, 348.

    Article  CAS  Google Scholar 

  14. Coughlan, L. M., Cotter, P. D., Hill, C., & Alvarez-Ordóñez, A. (2015). Biotechnological applications of functional metagenomics in the food and pharmaceutical industries. Frontiers in Microbiology, 6, 672.

    Article  Google Scholar 

  15. Ferrer, M., Beloqui, A., Timmis, K. N., & Golyshin, P. N. (2009). Metagenomics for mining new genetic resources of microbial communities. Journal of Molecular Microbiology and Biotechnology, 16(1–2), 109–123.

    Article  CAS  Google Scholar 

  16. Riesenfeld, C. S., Schloss, P. D., & Handelsman, J. (2004). Metagenomics: genomic analysis of microbial communities. Annual Reviews of Genetics, 38, 525–552.

    Article  CAS  Google Scholar 

  17. Donato, J. J., Moe, L. A., Converse, B. J., Smart, K. D., Berklein, F. C., McManus, P. S., & Handelsman, J. (2010). Metagenomic analysis of apple orchard soil reveals antibiotic resistance genes encoding predicted bifunctional proteins. Applied and Environmental Microbiology, 76, 4396–4401.

    Article  CAS  Google Scholar 

  18. Perner, M., Ilmberger, N., Köhler, H. U., Chow, J., & Streit, W. R. (2011). Emerging fields in functional metagenomics and its industrial relevance: overcoming limitations and redirecting the search for novel biocatalysts. In F. J. de Bruijn (Ed.), Handbook of molecular microbial ecology II: metagenomics in different habitats (pp. 483–498). Hoboken: Wiley.

    Google Scholar 

  19. Uchiyama, T., Abe, T., Ikemura, T., & Watanabe, K. (2005). Substrate induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nature Biotechnology, 23, 88–93.

    Article  CAS  Google Scholar 

  20. Beloqui, A., Nechitaylo, T. Y., López-Cortés, N., Ghazi, A., Guazzaroni, M. E., Polaina, J., et al. (2010). Diversity of glycosyl hydrolases from cellulose depleting communities enriched from casts of two earthworm species. Applied and Environmental Microbiology, 76, 5934–5946.

    Article  CAS  Google Scholar 

  21. Voget, S., Leggewie, C., Uesbeck, A., Raasch, C., Jaeger, K. E., & Streit, W. R. (2003). Prospecting for novel biocatalysts in a soil metagenome. Applied and Environmental Microbiology, 69, 6235–6242.

    Article  CAS  Google Scholar 

  22. Yun, J., Kang, S., Park, S., Yoon, H., Kim, M. J., Heu, S., & Ryu, S. (2004). Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Applied and Environmental Microbiology, 70, 7229–7235.

    Article  CAS  Google Scholar 

  23. Elend, C., Schmeisser, C., Leggewie, C., Babiak, P., Carballeira, J. D., Steele, H. L., et al. (2006). Isolation and biochemical characterization of two novel metagenome-derived esterases. Applied and Environmental Microbiology, 72, 3637–3645.

    Article  CAS  Google Scholar 

  24. Pereira, M. R., Mercaldi, G. F., Maester, T. C., Balan, A., & de Macedo Lemos, E. G. (2015). Est16, a new esterase isolated from a metagenomic library of a microbial consortium specializing in diesel oil degradation. PloS One, 10(7), e0133723.

    Article  CAS  Google Scholar 

  25. Williamson, L. L., Borlee, B. R., Schloss, P. D., Guan, C., Allen, H. K., & Handelsman, J. (2005). Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor. Applied and Environmental Microbiology, 71, 6335–6344.

    Article  CAS  Google Scholar 

  26. Gabor, E. M., Alkema, W. B., & Janssen, D. B. (2004). Quantifying the accessibility of the metagenome by random expression cloning techniques. Environmental Microbiology, 6, 879–886.

    Article  CAS  Google Scholar 

  27. Martinez, A., Kolvek, S. J., Yip, C. L., Hopke, J., Brown, K. A., MacNeil, I. A., & Osburne, M. S. (2004). Genetically modified bacterial strains and novelbacterial artificial chromosome shuttle vectors for constructing environmentallibraries and detecting heterologous natural products in multiple expression hosts. Applied and Environmental Microbiology, 70, 2452–2463.

    Article  CAS  Google Scholar 

  28. Craig, J. W., Chang, F. Y., Kim, J. H., Obiajulu, S. C., & Brady, S. F. (2010). Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse proteobacteria. Applied and Environmental Microbiology, 76, 1633–1641.

    Article  CAS  Google Scholar 

  29. Lee, H. S., Kwon, K. K., Kang, S. G., Cha, S. S., Kim, S. J., & Lee, J. H. (2010). Approaches for novel enzyme discovery from marine environments. Current Opinion in Biotechnology, 21, 353–357.

    Article  CAS  Google Scholar 

  30. Hjort, K., Bergström, M., Adesina, M. F., Jansson, J. K., Smalla, K., & Sjöling, S. (2010). Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen suppressive soil. FEMS Microbiology Ecology, 71, 197–207.

    Article  CAS  Google Scholar 

  31. Schmidt, O., Drake, H. L., & Horn, M. A. (2010). Hitherto unknown [Fe-Fe]-hydrogenase gene diversity in anaerobes and anoxic enrichments from a moderately acidic fen. Applied and Environmental Microbiology, 76, 2027–2031.

    Article  CAS  Google Scholar 

  32. Villamizar, G. A., Nacke, H., & Daniel, R. (2017). Function-based metagenomic library screening and heterologous expression strategy for genes encoding phosphatase activity. Methods in Molecular Biology, 1539, 249–260.

    Article  Google Scholar 

  33. Knietsch, A., Bowien, S., Whited, G., Gottschalk, G., & Daniel, R. (2003). Identification and characterization of coenzyme B12-dependent glycerol dehydratase- and dioldehydratase-encoding genes from metagenomic DNA libraries derived from enrichment cultures. Applied and Environmental Microbiology, 69, 3048–3060.

    Article  CAS  Google Scholar 

  34. Li, M., Hong, Y., Klotz, M. G., & Gu, J. D. (2010). A comparison of primer sets for detecting 16S rRNA and hydrazine oxidoreductase genes of anaerobic ammonium-oxidizing bacteria in marine sediments. Applied Microbiology and Biotechnology, 86, 781–790.

    Article  CAS  Google Scholar 

  35. Tyson, G. W., Chapman, J., Hugenholtz, P., Allen, E. E., Ram, R. J., Richardson, P. M., Solovyev, V. V., Rubin, E. M., Rokhsar, D. S., & Banfield, J. F. (2004). Community structure and metabolism through reconstruction of microbialgenomes from the environment. Nature, 428, 37–43.

    Article  CAS  Google Scholar 

  36. Warnecke, F., Luginbühl, P., Ivanova, N., Ghassemian, M., Richardson, T. H., & Stege, J. T. (2007). Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 450, 560–565.

    Article  CAS  Google Scholar 

  37. Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., et al. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304, 66–74.

    Article  CAS  Google Scholar 

  38. Hess, M., Sczyrba, A., Egan, R., Kim, T. W., Chokhawala, H., Schroth, G., et al. (2011). Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science, 331, 463–467.

    Article  CAS  Google Scholar 

  39. Weinstock, G. M. (2012). Genomic approaches to studying the human microbiota. Nature, 489, 250–256.

    Article  CAS  Google Scholar 

  40. Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S. M., Betley, J., Fraser, L., Bauer, M., Gormley, N., Gilbert, J. A., Smith, G., & Knight, R. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal, 6, 1621–1624.

    Article  CAS  Google Scholar 

  41. Loman, N. J., Misra, R. V., Dallman, T. J., Constantinidou, C., Gharbia, S. E., Wain, J., & Pallen, M. J. (2012). Performance comparison of bench top high throughput sequencing platforms. Nature Biotechnology, 30, 434–439.

    Article  CAS  Google Scholar 

  42. Gans, J., Wolinsky, M., & Dunbar, J. (2005). Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science, 309, 1387–1390.

    Article  CAS  Google Scholar 

  43. Kuczynski, J., Lauber, C. L., Walters, W. A., Parfrey, L. W., Clemente, J. C., Gevers, D., & Knight, R. (2012). Experimental and analytical tools for studying the human microbiome. Nature Review in Genetics, 13, 47–58.

    Article  CAS  Google Scholar 

  44. Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005(437), 376–380.

    Google Scholar 

  45. Wheeler, D. A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., et al. (2008). The complete genome of an individual by massively parallel DNA sequencing. Nature, 452, 872–876.

    Article  CAS  Google Scholar 

  46. Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537–7541.

    Article  CAS  Google Scholar 

  47. Schmieder, R., & Edwards, R. (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics, 27, 863–864.

    Article  CAS  Google Scholar 

  48. Huson, D. H., & Weber, N. (2013). Microbial community analysis using MEGAN. Methods in Enzymology, 531, 465–485.

    Article  CAS  Google Scholar 

  49. Paulson, J. N., Stine, O. C., Bravo, H. C., & Pop, M. (2013). Differential abundance analysis for microbial marker-gene surveys. Nature Methods, 10, 1200–1202.

    Article  CAS  Google Scholar 

  50. Liu, B., & Pop, M. (2011). MetaPath: identifying differentially abundant metabolic pathways in metagenomic datasets. BMC Proceedings, 5, S9.

    Article  Google Scholar 

  51. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    Article  CAS  Google Scholar 

  52. McMurdie, P. J., & Holmes, S. (2014). Shiny-phyloseq: web application for interactive microbiome analysis with provenance tracking. Bioinformatics, 31, 282–283.

    Article  CAS  Google Scholar 

  53. Meyer, F., Paarmann, D., D’Souza, M., Olson, R., Glass, E. M., Kubal, M., et al. (2008). The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics, 9, 386.

    Article  CAS  Google Scholar 

  54. Su, X., Pan, W., Song, B., Xu, J., & Ning, K. (2014). Parallel-META 2.0: enhanced metagenomic data analysis with functional annotation, high performance computing and advanced visualization. PloS One, 9, e89323.

    Article  CAS  Google Scholar 

  55. Krause, L., Diaz, N. N., Goesmann, A., Kelley, S., Nattkemper, T. W., Rohwer, F., et al. (2008). Phylogenetic classification of short environmental DNA fragments. Nucleic Acids Research, 36, 2230–2239.

    Article  CAS  Google Scholar 

  56. Medema, M. H., Blin, K., Cimermancic, P., de Jager, V., Zakrzewski, P., Fischbach, M. A., et al. (2011). antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Research, 39, W339–W346.

    Article  CAS  Google Scholar 

  57. Fajardo, J. E., & Fiser, A. (2013). Protein structure based prediction of catalytic residues. BMC Bioinformatics, 14, 63.

  58. Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research, 37, D233–D238.

    Article  CAS  Google Scholar 

  59. Sirim, D., Wagner, F., Wang, L., Schmid, R.D., & Pleiss, J. (2011). The Laccase Engineering Database: a classification and analysis system for laccases and related multicopper oxidases. Database (Oxford) 2011,bar006. https://doi.org/10.1093/database/bar006.

  60. Widmann, M., & Pleiss, J. (2014). Protein variants form a system of networks: microdiversity of IMP metallo-beta-lactamases. PloS One, 9, e101813.

    Article  CAS  Google Scholar 

  61. Najah, M., Mayot, E., Mahendra-Wijaya, I. P., Griffiths, A. D., Ladame, S., & Drevelle, A. (2013). New glycosidase substrates for droplet-based microfluidic screening. Annals of Chemistry, 85, 9807–9814.

    Article  CAS  Google Scholar 

  62. Meier, M. J., Paterson, E. S., & Lambert, I. B. (2015). Use of substrate-induced gene expression in metagenomic analysis of an aromatic hydrocarbon-contaminated soil. Applied and Environmental Microbiology, 82, 897–909.

    Article  CAS  Google Scholar 

  63. Vidal-Melgosa, S., Pedersen, H. L., Schückel, J., Arnal, G., Dumon, C., Amby, D. B., et al. (2015). A new versatile microarray-based method for high throughput screening of carbohydrate-active enzymes. Journal of Biological Chemistry, 290, 9020–9036.

    Article  CAS  Google Scholar 

  64. Colin, P. Y., Kintses, B., Gielen, F., Miton, C. M., Fischer, G., Mohamed, M. F., Hyvönen, M., Morgavi, D. P., Janssen, D. B., & Hollfelder, F. (2015). Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nature Communications, 7(6), 10008.

    Article  CAS  Google Scholar 

  65. He, S., Kunin, V., Haynes, M., Martin, H. G., Ivanova, N., Rohwer, F., et al. (2010). Metatranscriptomic array analysis of ‘Candidatus Accumulibacter phosphatis’-enriched enhanced biological phosphorus removal sludge. Environmental Microbiology, 12, 1205–1217.

    Article  CAS  Google Scholar 

  66. Frias-Lopez, J., Shi, Y., Tyson, G. W., Frias-Lopez, J., Shi, Y., Tyson, G. W., Coleman, M. L., Schuster, S. C., Chisholm, S. W., & Delong, E. F. (2008). Microbial community gene expression in ocean surface waters. Proceedings of the National Academy of Sciences of the United States of America, 105, 3805–3810.

    Article  CAS  Google Scholar 

  67. Zhou, J., He, Z., Yang, Y., Deng, Y., Tringe, S. G., & Alvarez-Cohen, L. (2015). Highthroughput metagenomic technologies for complex microbial community analysis: open and closed formats. MBio, 6(1), e02288–e02214.

    Article  CAS  Google Scholar 

  68. Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G. W., et al. (2006). Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 442, 806–809.

    Article  CAS  Google Scholar 

  69. Shi, Y., Tyson, G. W., & DeLong, E. F. (2009). Metatranscriptomics reveals unique microbial small RNAs in the ocean’s water column. Nature, 459, 266–269.

    Article  CAS  Google Scholar 

  70. Zampieri, E., Chiapello, M., Daghino, S., Bonfante, P., & Mello, A. (2016). Soil metaproteomics reveals an inter-kingdom stress response to the presence of black truffles. Scientific Reports, 6, 25773.

    Article  CAS  Google Scholar 

  71. Ram, R. J., Verberkmoes, N. C., Thelen, M. P., Tyson, G. W., Baker, B. J., Blake, R. C., et al. (2005). Community proteomics of a natural microbial biofilm. Science, 308, 1915–1920.

    Article  CAS  Google Scholar 

  72. Kleiner, M., Wentrup, C., Lott, C., Teeling, H., Wetzel, S., Young, J., Chang, Y. J., Shah, M., VerBerkmoes, N. C., et al. (2012). Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use. Proceedings of the National Academy of Sciences of the United States of America, 109, E1173–E1182.

    Article  CAS  Google Scholar 

  73. Tanca, A., Manghina, V., Fraumene, C., Palomba, A., Abbondio, M., Deligios, M., Silverman, M., & Uzzau, S. (2017). Metaproteogenomics reveals taxonomic and functional changes between cecal and fecal microbiota in mouse. Frontiers in Microbiology, 14(8), 391.

    Article  Google Scholar 

  74. Gillan, D. C., Roosa, S., Kunath, B., Billon, G., & Wattiez, R. (2015). The long-term adaptation of bacterial communities in metal-contaminated sediments: a metaproteogenomic study. Environmental Microbiology, 17(6), 1991–2005.

    Article  CAS  Google Scholar 

  75. Seifert, J., Herbst, F. A., Halkjaer Nielsen, P., Planes, F. J., Jehmlich, N., Ferrer, M., & von Bergen, M. (2013). Bioinformatic progress and applications in metaproteogenomics for bridging the gap between genomic sequences and metabolic functions in microbial communities. Proteomics, 13(18–19), 2786–2804.

    CAS  Google Scholar 

  76. Wang, C., Dong, D., Wang, H., Müller, K., Qin, Y., Wang, H., & Wu, W. (2016). Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnology for Biofuels, 29(9), 22.

    Article  CAS  Google Scholar 

  77. Fang, Z., Li, T., Wang, Q., Zhang, X., Peng, H., Fang, W., et al. (2010). A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability. Applied Microbiology and Biotechnology, 89, 1103–1110.

    Article  CAS  Google Scholar 

  78. Ferrer, M., Beloqui, A., & Golyshin, P. N. (2010). Screening metagenomic libraries for laccase activities. Methods in Molecular Biology, 668, 189–202.

    Article  CAS  Google Scholar 

  79. Brennan, Y., Callen, W. N., Christoffersen, L., Dupree, P., Goubet, F., Healey, S., et al. (2004). Unusual microbial xylanases from insect guts. Applied and Environmental Microbiology, 70, 3609–3617.

    Article  CAS  Google Scholar 

  80. Lee, C., Kibblewhite-Accinelli, R., Wagschal, K., Robertson, G., & Wong, D. (2006). Cloning and characterization of a cold-active xylanase enzyme from an environmental DNA library. Extremophiles, 10, 295–300.

    Article  CAS  Google Scholar 

  81. Hu, Y., Zhang, G., Li, A., Chen, J., & Ma, L. (2008). Cloning and enzymatic characterization of a xylanase gene from a soil-derived metagenomic library with an efficient approach. Applied Microbiology and Biotechnology, 80, 823–830.

    Article  CAS  Google Scholar 

  82. Liu, N., Yan, X., Zhang, M., Xie, L., Wang, Q., Huang, Y., et al. (2011). Microbiome of fungus-growing termites: a new reservoir for lignocellulase genes. Applied and Environmental Microbiology, 77(1), 48–56.

    Article  CAS  Google Scholar 

  83. Fang, Z., Fang, W., Liu, J., Hong, Y., Peng, H., Zhang, X., et al. (2010). Cloning and characterization of a beta-glucosidase from marine microbial metagenome with excellent glucose tolerance. Journal of Microbiology and Biotechnology, 20, 1351–1358.

    Article  CAS  Google Scholar 

  84. Duan, C. J., Xian, L., Zhao, G. C., Feng, Y., Pang, H., Bai, X. L., et al. (2009). Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens. Journal of Applied Microbiology, 107, 245–256.

    Article  CAS  Google Scholar 

  85. Henne, A., Schmitz, R. A., Bomeke, M., Gottschalk, G., & Daniel, R. (2000). Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Applied and Environmental Microbiology, 66, 3113–3116.

    Article  CAS  Google Scholar 

  86. Ferrer, M., Golyshina, O. V., Chernikova, T. N., Khachane, A. N., Martins Dos Santos, V. A., Yakimov, M. M., et al. (2005). Microbial enzymes mined from the Urania deep-sea hypersaline anoxic basin. Chemical Biology, 12, 895–904.

    Article  CAS  Google Scholar 

  87. Rhee, J. K., Ahn, D. G., Kim, Y. G., & Oh, J. W. (2005). New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Applied and Environmental Microbioogy, 71, 817–825.

    Article  CAS  Google Scholar 

  88. Palackal, N., Lyon, C. S., Zaidi, S., Luginbuhl, P., Dupree, P., Goubet, F., et al. (2007). A multi-functional hybrid glycosyl hydrolase discovered in an uncultured microbial consortium from ruminant gut. Applied Microbiology. Biotechnology, 74, 113–124.

    Article  CAS  Google Scholar 

  89. Yao, J., Chen, Q., Zhong, G., Cao, W., Yu, A., & Liu, Y. (2014). Immobilization and characterization of tannase from a metagenomic library and its use for removal of tannins from green tea infusion. Journal of Microbiology and Biotechnology, 24, 80–86.

    Article  CAS  Google Scholar 

  90. Neveu, J., Regeard, C., & Dubow, M. S. (2011). Isolation and characterization of two serine proteases from metagenomic libraries of the Gobi and Death Valley deserts. Applied Microbiology and Biotechnology, 91, 635–644.

    Article  CAS  Google Scholar 

  91. Martina, M., Bivera, S., Steels, S., Barbeyronb, T., Jamb, M., Portetelle, D., Michelb, G., & Vandenbo, M. (2014). Functional screening of a metagenomic library of seaweed-associated microbiota: identification and characterization of a halotolerant, cold active marine endo-β-1,4-endoglucanase. Applied and Environmental Microbiology, 80(16), 4958–4967.

    Article  CAS  Google Scholar 

  92. Hua, M., Zhao, S., Zhang, L., Liu, D., Xia, H., Li, F., & Chen, S. (2015). Direct detection, cloning and characterization of a glucoside hydrolase from forest soil. Biotechnology Letters, 37(6), 1227–1232.

    Article  CAS  Google Scholar 

  93. Fang, Z., Li, T., Wang, Q., Zhang, X., Peng, H., Fang, W., et al. (2011). A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability. Applied Microbiology and Biotechnology, 89, 1103–1110.

    Article  CAS  Google Scholar 

  94. Gomes-Pepe, E. S., Machado Sierra, E. G., Pereira, M. R., Castellane, T. C. L., & Lemos, E. G. M. (2016). Bg10: a novel metagenomics alcohol-tolerant and glucose-stimulated GH1 β-glucosidase suitable for lactose-free milk preparation. PloS One, 11(12), e0167932. https://doi.org/10.1371/journal.pone.0167932.

  95. Pottkamper, J., Barthen, P., Ilmberger, N., Schwaneberg, U., Schenk, A., Schulte, M., et al. (2009). Applying metagenomics for the identification of bacterial cellulases that are stable in ionic liquids. Green Chemistry, 11, 957–965.

    Article  CAS  Google Scholar 

  96. Kim, E. Y., Oh, K. H., Lee, M. H., Kang, C. H., Oh, T. K., & Yoon, J. H. (2009). Novel cold-adapted alkaline lipase from an intertidal flat metagenome and proposal for a new family of bacterial lipases. Applied and Environmental Microbiology, 75, 257–260.

    Article  CAS  Google Scholar 

  97. Peng, Q., Wang, X., Shang, M., Huang, J., Guan, G., Li, Y., et al. (2014). Isolation of a novel alkaline-stable lipase from a metagenomic library and its specific application form ilk fat flavour production. Microbial Cell Factories, 13, 1.

    Article  CAS  Google Scholar 

  98. Wang, G., Wang, Q., Lin, X., Ng, T. B., Yan, R., Lin, J., & Ye, X. (2016). A novel cold-adapted and highly salt-tolerant esterase from Alkalibacterium sp. SL3 from the sediment of a soda lake. Scientific Reports, 6, 19494.

    Article  CAS  Google Scholar 

  99. Biver, S., Portetelle, D., & Vandenbol, M. (2013). Characterization of a new oxidant-stable serine protease isolated by functional metagenomics. Springer Plus, 2, 410.

    Article  CAS  Google Scholar 

  100. Pushpam, P. L., Rajesh, T., & Gunasekaran, P. (2011). Identification and characterization of alkaline serine protease from goat skin surface metagenome. AMB Express, 1, 3.

    Article  CAS  Google Scholar 

  101. Wang, K., Lu, Y., Liang, W. Q., Wang, S. D., Jiang, Y., Huang, R., et al. (2012). Enzymatic synthesis of galacto-oligosaccharides in an organic- aqueous biphasic system by a novel beta-galactosidase from a metagenomic library. Journal of Agricultural and Food Chemistry, 60, 3940–3946.

    Article  CAS  Google Scholar 

  102. Song, Q., & Zhang, X. (2008). Characterization of a novel non-specific nuclease from thermophilic bacteriophage GBSV1. BMC Biotechnology, 8, 43.

    Article  CAS  Google Scholar 

  103. de Pascale, D., Cusano, A. M., Autore, F., Parrilli, E., di Prisco, G., Marino, G., & Tutino, M. L. (2008). The cold-active Lip1 lipase from the Antarctic bacterium Pseumember of a new bacterial lipolytic doalteromonas haloplanktis TAC125 is a member of a new bacterial lipolytic enzyme family. Extremophiles, 12(3), 311–323.

    Article  CAS  Google Scholar 

  104. Nishihara, M., Kamata, M., Koyama, T., & Yazawa, K. (2008). New phospholipaseA1-producing bacteria from a marine fish. Marine Biotechnology, 10(4), 382–387.

    Article  CAS  Google Scholar 

  105. Yoon, S. A., Ryu, S. I., Lee, S. B., & Moon, T. W. (2008). Purification and characterization of branching specificity of a novel extracellular amylolytic enzyme from marine hyperthermophilic Rhodothermus marinus. Journal of Microbiology and Biotechnology, 18(3), 457–464.

    CAS  Google Scholar 

  106. Fu, X. T., Lin, H., & Kim, S. (2008). Purification and characterization of a novel beta-agarase, AgaA34, from Agarivoransalbus YKW. Applied Microbiology and Biotechnology, 78(2), 265–273.

    Article  CAS  Google Scholar 

  107. Cipolla, A., Delbrassine, F., DaLage, J. L., & Feller, G. (2012). Temperature adaptations in psychrophilic, mesophilic and thermophilic chloride-dependent alpha-amylases. Biochimie, 94, 1943–1950.

    Article  CAS  Google Scholar 

  108. Florczak, T., Daroch, M., Wilkinson, M. C., Bialkowska, A., Bates, A. D., Turkiewicz, M., et al. (2013). Purification, characterisation and expression in Saccharomyces cerevisiae of Lip G7 an enantioselective, cold-adapted lipase from the Antarctic filamentous fungus Geomyces sp. P7 with unusual thermo-stability characteristics. Enzyme and Microbial Technology, 53, 18–24.

    Article  CAS  Google Scholar 

  109. Liszka, M. J., Clark, M. E., Schneider, E., & Clark, D. S. (2012). Nature versus nurture: developing enzymes that function under extreme conditions. Annual Reviews in Chemistry and Biomolecular Engineering, 3, 77–102.

    Article  CAS  Google Scholar 

  110. Jeon, J. H., Kim, J. T., Kim, Y. J., Kim, H. K., Lee, H. S., Kang, S. G., et al. (2009). Cloning and characterization of a cold-active lipase from a deep-sea sediment metagenome. Applied Microbiology and Biotechnology, 81, 865–874.

    Article  CAS  Google Scholar 

  111. Kobayashi, T., Koide, O., Mori, K., Shimamura, S., Matsuura, T., et al. (2008). Phylogenetic and enzymatic diversity of deep subseafloor aerobic microorganisms in organics- and methane-rich sediments off Shimokita Peninsula. Extremophiles, 12(4), 519–527.

    Article  CAS  Google Scholar 

  112. Fu, J., Leiros, H. K., DePascale, D., Johnson, K. A., Blencke, H. M., & Landfald, B. (2013). Functional and structural studies of a novel cold-adapted esterase from an Arctic intertidal metagenomic library. Applied Microbiology and Biotechnology, 97, 3965–3978.

    Article  CAS  Google Scholar 

  113. Lee, M. H., Oh, K. H., Kang, C. H., Kim, J. H., Oh, T. K., Ryu, C. M., et al. (2012). Novel metagenome- derived, cold adapted alkaline phospholipase with superior lipase activity as an intermediate between phospholipase and lipase. Applied Microbiology and Biotechnology, 78, 4959–4966.

    CAS  Google Scholar 

  114. Zhang, Y., Hao, J., Zhang, Y., Chen, X., Xie, B., Shi, M., Zhou, B., Zhang, Y., & Li, P. (2017). Identification and characterization of a novel salt-tolerant esterase from the deep-sea sediment of the South China Sea. Frontiers in Microbiology, 8, 441.

    Google Scholar 

  115. Gao, W., Wu, K., Chen, L., Fan, H., Zhao, Z., Gao, B., Wang, H., & Wei, D. (2016). A novel esterase from a marine mud metagenomic library for biocatalytic synthesis of short-chain flavour esters. Microbial Cell Factory, 15, 41.

    Article  CAS  Google Scholar 

  116. Nair, H. P., Vincent, H., Puthusseri, R. M., & Bhat, S. G. (2017). Molecular cloning and characterization of a halotoleranta-amylase from marine metagenomic library derived from Arabian Sea sediments. Biotech, 3(7), 65.

    Google Scholar 

  117. Schroder, C., Elleuche, S., Blank, S., & Antranikian, G. (2014). Characterization of a heat-active archaeal beta glucosidase from a hydrothermal spring metagenome. Enzyme and Microbial Technology, 57, 48–54.

    Article  CAS  Google Scholar 

  118. Fang, Z. M., Li, T. L., Chang, F., Zhou, P., Fang, W., Hong, Y. Z., et al. (2012). A new marine bacterial laccase with chloride-enhancing, alkaline-dependent. Activity and dye decolorization ability. Bioresource Technology, 111, 36–41.

    Article  CAS  Google Scholar 

  119. Olivera, N. L., Sequeiros, C., & Nievas, M. L. (2007). Diversity and enzyme properties of protease-producing bacteria isolated from sub-Antarctic sediments of Isla de Los Estados, Argentina. Extremophiles, 11, 517–526.

    Article  CAS  Google Scholar 

  120. Collins, T., Meuwis, M. A., Stals, I., Claeyssens, M., Feller, G., & Gerday, C. (2002). A novel family 8 xylanase, functional and physic-chemical characterization. Journal of Biological Chemistry, 277, 35133–35139.

    Article  CAS  Google Scholar 

  121. Hobel, C. F., Hreggvidsson, G. O., Marteinsson, V. T., Bahrani-Mougeot, F., Einarsson, J. M., & Kristjansson, J. K. (2005). Cloning, expression, and characterization of a highly thermo-stable family 18 chitinase from Rhodothermus marinus. Extremophiles, 9(1), 53–64.

    Article  CAS  Google Scholar 

  122. Wierzbicka-Wos, A., Bartasun, P., Cieslinski, H., & Kur, J. (2013). Cloning and characterization of a novel cold-active glycoside hydrolase family enzyme, with beta-glucosidase, beta-fucosidase and beta-galactosidase activities. BMC Biotechnology, 13, 22.

    Article  CAS  Google Scholar 

  123. Aurilia, V., Parracino, A., & D'Auria, S. (2008). Microbial carbohydrate esterases in cold adapted environments. Gene, 410, 234–240.

    Article  CAS  Google Scholar 

  124. Huston, A. L., Methe, B., & Deming, J. W. (2004). Purification, characterization, and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Applied and Environmental Microbiology, 70, 3321–3328.

    Article  CAS  Google Scholar 

  125. Fernández-Arrojo, L., Guazzaroni, M. E., López-Cortés, N., Beloqui, A., & Ferrer, M. (2010). Metagenomic era for biocatalyst identification. Current Opinion in Biotechnology, 21, 725–733.

    Article  CAS  Google Scholar 

  126. Spickermann, D., Kara, S., Barackov, I., Hollmanns, F., Schwaneberg, U., Duenkelmanns, P., & Leggewie, C. (2014). Alcohol dehydrogenase stabilization by additives under industrially relevant reaction conditions. Journal of Molecular Catalysis and Enzymes, 103, 24–28.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Aravind Madhavan acknowledges the Department of Biotechnology for financial support under DBT Research Associateship programme. One of the authors, Raveendran Sindhu, acknowledges the Department of Biotechnology for financial support under DBT Bio-CARe scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Pandey.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhavan, A., Sindhu, R., Parameswaran, B. et al. Metagenome Analysis: a Powerful Tool for Enzyme Bioprospecting. Appl Biochem Biotechnol 183, 636–651 (2017). https://doi.org/10.1007/s12010-017-2568-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2568-3

Keywords

Navigation