Skip to main content
Log in

In Silico Analysis of Fatty Acid Desaturase Genes and Proteins in Grasses

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fatty acid desaturases (FADs) catalyze the introduction of a double bond into acyl chains. Two FAD groups have been identified in plants: acyl-acyl carrier proteins (ACPs) and acyl-lipid or membrane-bound FAD. The former catalyze the conversion of 18:0 to 18:1 and to date have only been identified in plants. The latter are found in eukaryotes and bacteria and are responsible for multiple desaturations. In this study, we identified 82 desaturase gene and protein sequences from 10 grass species deposited in GenBank that were analyzed using bioinformatic approaches. Subcellular localization predictions of desaturase family revealed their localization in plasma membranes, chloroplasts, endoplasmic reticula, and mitochondria. The in silico mapping showed multiple chromosomal locations in most species. Furthermore, the presence of the characteristic histidine domains, the predicted motifs, and the finding of transmembrane regions strongly support the protein functionality. The identification of putative regulatory sites in the promotor and the expression profiles revealed the wide range of pathways in which fatty acid desaturases are involved. This study is an updated survey on desaturases of grasses that provides a comprehensive insight into diversity and evolution. This characterization is a necessary first step before considering these genes as candidates for new biotechnological approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wallis, J., Watts, J., & Browse, J. (2002). Polyunsaturated fatty acid synthesis: what will they think of next? Trends in Biochemical Sciences, 27, 467–473.

    Article  CAS  Google Scholar 

  2. Murata, N., & Wada, H. (1995). Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. The Biochemical Journal, 308, 1–8.

    Article  CAS  Google Scholar 

  3. Lindqvist, Y., Huang, W., Schneider, G., & Shanklin, J. (1996). Crystal structure of Δ9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins. The EMBO Journal, 15, 4081–4092.

    CAS  Google Scholar 

  4. Los, D., & Murata, N. (1998). Structure and expression of fatty acid desaturases. Biochimica et Biophysica Acta, 1394, 3–15.

    Article  CAS  Google Scholar 

  5. López Alonso, D., García-Maroto, F., Rodríguez-Ruiz, J., Garrido, J., & Vilches, M. (2003). Evolution of the membrane-bound fatty acid desaturases. Biochemical Systematics and Ecology, 31, 1111–1124.

    Article  Google Scholar 

  6. Sperling, P., Zahringer, U., & Heinz, E. (1998). A sphingolipid desaturase from higher plants. Identification of a new cytochrome b5 fusion protein. The Journal of Biological Chemistry, 273, 28,590–28,596.

    Article  CAS  Google Scholar 

  7. Mikkilineni, V., & Rocheford, T. (2003). Sequence variation and genomic organization of fatty acid desaturase-2 (fad2) and fatty acid desaturase-6 (fad6) cDNAs in maize. Theoretical and Applied Genetics, 106, 1326–1332.

    Article  CAS  Google Scholar 

  8. Hernández, M., Mancha, M., & Martínez-Rivas, J. M. (2005). Molecular cloning and characterization of genes encoding two microsomal oleate desaturases (FAD2) from olive. Phytochemistry, 66, 1417–1426.

    Article  Google Scholar 

  9. Rousselin, P., Hahne, G., Prieto-Dapena, P., & Jordano, J. (2002). Modification of sunflower oil quality by seed-specific expression of a heterologous Δ9-stearoyl-(acyl carrier protein) desaturase gene. Plant Breeding, 121, 108–116.

    Article  CAS  Google Scholar 

  10. Matteucci, M., D'Angeli, S., Errico, S., Lamanna, R., Perrotta, G., & Altamura, M. M. (2011). Cold affects the transcription of fatty acid desaturases and oil quality in the fruit of Olea europaea L. genotypes with different cold hardiness. Journal of Experimental Botany, 62, 3403–3420.

    Article  CAS  Google Scholar 

  11. Karabudak, T., Bor, M., Ozdemir, F., & Turkan, I. (2014). Glycine betaine protects tomato (Solanum lycopersicum) plants at low temperature by inducing fatty acid desaturase7 and lipoxygenase gene expression. Molecular Biology Reports, 41, 1401–1410.

    Article  CAS  Google Scholar 

  12. Upchurch, R. (2008). Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnology Letters, 30, 967–977.

    Article  CAS  Google Scholar 

  13. Ling, H., Zhao, S., Liu, D., Wang, J., Sun, H., Zhang, C., et al. (2013). Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 496, 87–90.

    Article  CAS  Google Scholar 

  14. Jia, J., Zhao, S., Kong, X., Li, Y., Zhao, G., He, W., et al. (2013). Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 496, 91–95.

    Article  CAS  Google Scholar 

  15. Choulet, F., Alberti, A., Theil, S., Glover, N., Barbe, V., Daron, J., Pingault, L., et al. (2014). Structural and functional partitioning of bread wheat chromosome 3B. Science, 345, 1249721.

    Article  Google Scholar 

  16. Pearce, S., Tabbita, F., Cantu, D., Buffalo, V., Avni, R., Vazquez-Gross, H., Zhao, R., Conley, C., Distelfeld, A., & Dubcovksy, J. (2014). Regulation of Zn and Fe transporters by the GPC1 gene during early wheat monocarpic senescence. BMC Plant Biology, 14, 368. doi:10.1186/s12870-014-0368-2.

    Article  Google Scholar 

  17. Liu, Z., Xin, M., Qin, J., Peng, H., Ni, Z., Yao, Y., & Sun, Q. (2015). Temporal transcriptome profiling reveals expression partitioning of homologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.) BMC Plant Biology, 15, 152. doi:10.1186/s12870-015-0511-8.

    Article  Google Scholar 

  18. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M., Appel, R., & Bairoch A. (2005). Protein identification and analysis tools on the ExPASy server. In: Walker J. M. (ed.), The proteomics protocols handbook (pp. 571–607). Humana.

  19. Bailey, T., Williams, N., Misleh, C., & Li, W. (2006). MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research, 34(Web Server issue), W369–W373. doi:10.1093/nar/gkl198.

    Article  CAS  Google Scholar 

  20. Krogh, A., von Heijne, B. L., & Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology, 305, 567–580.

    Article  CAS  Google Scholar 

  21. Hirokawa, T., Boon-Chieng, S., & Mitaku, S. (1998). SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics, 14, 378–379.

    Article  CAS  Google Scholar 

  22. Yu, C., Chen, Y., Lu, C., & Hwang, J. (2006). Prediction of protein subcellular localization. Proteins, 64, 643–651.

    Article  CAS  Google Scholar 

  23. Lovell, S., Davis, I., Arendall, W., Bakker, P., Word, J., Prisant, M., Richardson, J., & Richardson, D. C. (2003). Structure Validation by Cα Geometry: φ, ψ and Cβ Deviation. Proteins: Structure, Function, and Genetics, 50, 437–450.

  24. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.

    Article  CAS  Google Scholar 

  25. Jin, J., Tian, F., Yang, D. C., Meng, Y. Q., Kong, L., Luo, J. C., & Gao, G. (2016). PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Research. doi:10.1093/nar/gkw982.

  26. Mc Cartney, A., Dyer, J., Dhanoa, P., Kim, P., Andrews, D., McNew, J., & Mullen, R. (2004). Membrane-bound fatty acid desaturase are inserted co-translationally into the ER and contain different ER retrieval motif at the carboxi termini. The Plant Journal, 37, 156–173.

    Article  CAS  Google Scholar 

  27. Shanklin, J., & Cahoon, E. (1998). Desaturation and related modifications of fatty acids. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 611–641.

    Article  CAS  Google Scholar 

  28. Sayanova, O., Smith, M. A., Lapinskas, P., Stobart, A. K., Dobson, G., Christie, W. W., Shewry, P. R., & Napier, J. A. (1997). Expression of aborage desaturase cDNA containing an N-terminal cytochromeb5 domain results in the accumulation of high levels of delta6-desaturated fatty acids in transgenic tobacco. Proceedings of the National Academy of Sciences of the United States of America, 94, 4211–4216.

    Article  CAS  Google Scholar 

  29. Dyer, J. M., & Mullen, R. T. (2001). Immunocytological localization of two plant fatty acid desaturases in the endoplasmic reticulum. FEBS Letters, 494, 44–47.

    Article  CAS  Google Scholar 

  30. Ferro, M., Salvi, D., Brugiere, S., Miras, S., & Kowalski, S. (2003). Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Molecular & Cellular Proteomics, 2, 325–345.

    Article  CAS  Google Scholar 

  31. Beauchamp, E., Tekpli, X., Marteil, G., Lagadic-Gossmann, D., Legrand, P., & Rioux, V. (2009). N-myristoylation targets dihydroceramide delta4-desaturase 1 to mitochondria: partial involvement in the apoptotic effect of myristic acid. Biochimie, 91, 1411–1419.

    Article  CAS  Google Scholar 

  32. Todorova, R. (2008). Expression and localization of FAD2 desaturase from spinach in tobacco cells. Russian Journal of Plant Physiology, 55, 513–520.

    Article  CAS  Google Scholar 

  33. Pagny, S., Lerouge, P., Faye, L., & Gomord, V. (1999). Signals and mechanisms for protein retention in the endoplasmic reticulum. Journal of Experimental Botany, 50, 157–164.

    Article  CAS  Google Scholar 

  34. Liu, W., Li, W., He, Q., Khan Daud, M., Chen, J., & Zhu, S. (2015). Characterization of 19 genes encoding membrane-bound fatty acid desaturases and their expression profiles in Gossypium raimondii under low temperature. PloS One. doi:10.1371/journal.pone.0123281.

  35. Zhang, J., Zuo, T., & Peterson, T. (2013). Generation of tandem direct duplications by reversed ends transposition of maize ac elements. PLoS Genetics. doi:10.1371/journal.pgen.1003691.

  36. Schnable, J. C. (2015). Genome evolution in maize: from genomes back to genes. Annual Review of Plant Biology, 66, 329–343.

    Article  CAS  Google Scholar 

  37. Sperling, P., Ternes, P., Zank, T. K., & Heinz, E. (2003). The evolution of desaturases. Prostaglandins, Leukotrienes and Essential Fatty Acids, 68, 73–95.

    Article  CAS  Google Scholar 

  38. Basualdo, J., Díaz, M. L., Cuppari, S., Cardone, S., Soresi, D., Pérez, C. G., & Carrera, A. (2015). Allelic variation and differential expression of VRN-A1 in durum wheat genotypes varying in the vernalization response. Plant Breeding, 134, 520–528.

    Article  CAS  Google Scholar 

  39. Feldman, M., & Levy, A. A. (2012). Genome evolution due to allopolyploidization in wheat. Genetics, 192, 763–774.

    Article  CAS  Google Scholar 

  40. Horiguchi, G., Horiguchi, T., Takuichi, F., Naoto, K., & Hiroaki, K. (2000). Temperature-dependent translational regulation of the ER w-3 fatty acid desaturase gene in wheat root tips. The Plant Journal, 24, 805–813.

    Article  CAS  Google Scholar 

  41. Fukuchi-Mizutani, M., Savin, K., Cornish, E., Tanaka, Y., Ashikari, T., Kusumi, T., & Murata, N. (1995). Senescence-induced expression of a homologue of delta 9 desaturase in rose petals. Plant Molecular Biology, 29, 627–635.

    Article  CAS  Google Scholar 

  42. Ma, J., Liu, F., Wang, Q., Wang, K., Jones, D., & Zhang, B. (2016). Comprehensive analysis of TCP transcription factors and their expression during cotton (Gossypium arboreum) fiber early development. Scientific Reports. doi:10.1038/srep21535.

  43. Domínguez, T., Hernández, L., Pennycooke, J., Jiménez, P., Martínez Riva, J. M., Sanz, C., Stockinger, E., Sánchez-Serrano, J., & Sanmartín, M. (2010). Increasing ω-3 desaturase expression in tomato results in altered aroma profile and enhanced resistance to cold stress. Plant Physiology, 153, 655–665.

    Article  Google Scholar 

  44. Shi, J., Cao, Y., Fan, X., Li, M., Wang, Y., & Ming, F. (2012). A rice microsomal delta-12 fatty acid desaturase can enhance resistance to cold stress in yeast and Oryza sativa. Molecular Breeding, 29, 743–757.

    Article  CAS  Google Scholar 

  45. Agarwal, M., Hao, Y., Kapoor, A., Dong, C. H., Fuji, H., Zheng, X., & Zhu, J. K. (2006). A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. Journal of Biological Chemistry, 281, 37,636–37,645.

    Article  CAS  Google Scholar 

  46. Xia, N., Zhang, G., Liu, X.-Y., Deng, L., Cai, G.-L., Zhang, Y., Wang, X.-J., Zhao, J., Huang, L.-L., & Kang, Z. S. (2010). Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Molecular Biology Reports, 37, 3703–3712.

    Article  CAS  Google Scholar 

  47. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Goda, H., Shimada, Y., Yoshida, S., Shinozaki, K., & Yamaguchi-Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. The Plant Cell, 10, 391–406.

    Google Scholar 

  48. Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., & Yamaguchi-Shinozakia, K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell, 15, 63–78.

    Article  CAS  Google Scholar 

  49. Blais, A., & Dynlacht, B. (2005). Constructing transcriptional regulatory networks. Genes & Development, 19, 1499–1511.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Lucía Díaz.

Electronic Supplementary Material

ESM 1

(DOCX 534 kb).

ESM 2

(JPEG 2663 kb).

ESM 3

(JPEG 2404 kb).

ESM 4

(JPEG 173 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz, M.L., Cuppari, S., Soresi, D. et al. In Silico Analysis of Fatty Acid Desaturase Genes and Proteins in Grasses. Appl Biochem Biotechnol 184, 484–499 (2018). https://doi.org/10.1007/s12010-017-2556-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2556-7

Keywords

Navigation