Skip to main content
Log in

In Vitro Anti-inflammatory and Antioxidant Activities of 3,5,4′-Trihydroxy-6,7-Methylenedioxyflavone-O-Glycosides and Their Aglycone from Leaves of Polygonum tinctorium Lour

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Polygonum tinctorium Lour (indigo plant) has been regarded as a useful medicinal plant for traditional herbal medicine. The polyphenolic fraction of indigo leaves exhibited anti-inflammatory activities as determined by the suppressed synthesis of nitric oxide (NO) in cultured RAW264 macrophage cells. The acid hydrolysate of the fraction showed much more potent effect than the unhydrolyzed one. In sharp contrast, those fractions of indigo stems had almost no effect. 3,5,4′-Trihydroxy-6,7-methylenedioxyflavone (TMF)-O-glycosides and tryptanthrin were detected exclusively in the extracts of the leaves. The isolated flavonol species were furthermore tested for their anti-inflammatory activities against the synthesis of NO and prostaglandin E2 in the cultured macrophage cells. More potent anti-inflammatory effects were recognized with different aglycones of flavonols than their flavonol O-glycosides. Although the inhibitory effects of TMF were less effective than those of tryptanthrin, the levels of flavonol O-glycosides with TMF were much more abundant than those of tryptanthrin in the leaves. Oral administration of the fraction containing flavonol O-glycosides with TMF into mice revealed the detection of free TMF in the blood circulation, indicating that the aglycone moiety can be cleaved by digestive enzymes and absorbed in the gut. Alternatively, the assay of hydrophilic oxygen radical absorbance capacity revealed that the isolated species of flavonol O-glycosides with TMF and their aglycone had appreciable antioxidant activities. Taken together, our findings suggest that the predominant flavonol O-glycosides with TMF as an aglycone could be promising natural agents for the application to herbal medicine, nutraceuticals, and food additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TMF:

3,5,4′-Trihydroxy-6,7-methylenedioxyflavone

NO:

Nitric oxide

LPS:

Lipopolysaccharide

PG:

Prostaglandin

Trolox:

6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid

HPLC:

High-performance liquid chromatography

AAPH:

2,2′-Azobis(2-amidinopropane)dihydrochloride

MEM:

Minimal essential medium

D-PBS (−):

Dulbecco’s phosphate-buffered saline without Ca2+ and Mg2+ ions

FBS:

Fetal bovine serum

UPLC:

Ultra-performance liquid chromatography

ESI-TOF/MSE :

Electrospray ionization time-of-flight mass spectrometryE

PDA:

Photodiode array

GAE:

Gallic acid equivalent

H-ORAC:

Hydrophilic oxygen radical absorbance capacity

TE:

Trolox equivalent

ANOVA:

Analysis of variance

DW:

Dry weight

References

  1. Iwaki, K., & Kurimoto, M. (2002). Cancer preventive effects of the indigo plant, Polygonum tinctorium. Recent Research Developments in Cancer, 4, 429–437.

    CAS  Google Scholar 

  2. Jang, H. G., Heo, B. G., Park, B. G., Namiesnik, J., Barasch, D., Katrich, E., Vearasilp, K., Trakhtenberg, S., & Gorinstein, S. (2012). Chemical composition, antioxidant and anticancer effects of the seeds and leaves of indigo (Polygonum tinctorium Ait) plant. Applied Biochemistry and Biotechnology, 167, 1986–2004.

    Article  CAS  Google Scholar 

  3. Kimoto, T., Koya, S., Hino, K., Yamamoto, Y., Aga, H., Hashimoto, T., Masaki, N., Hanaya, T., Micallef, M. J., Iwaki, K., Ishihara, T., Ushio, S., Aga, M., Kunikata, T., Arai, S., Ikeda, M., Fukuda, S., & Kurimoto, M. (1999). Protection by indigo plant (Polygonum tinctorium Lour.) against renal oxidative damage in mice treated with ferric nitrilotriacetate. Natural Medicines, 53, 291–296.

    Google Scholar 

  4. Kunikata, T., Takefuji, T., Aga, H., Iwaki, K., Ikeda, M., & Kurimoto, M. (2000). Indirubin inhibits inflammatory reactions in delayed-type hypersensitivity. European Journal of Pharmacology, 410, 93–100.

    Article  CAS  Google Scholar 

  5. Koya-Miyata, S., Kimoto, T., Micallef, M. J., Hino, K., Taniguchi, M., Ushio, S., Iwaki, K., Ikeda, M., & Kurimoto, M. (2001). Prevention of azoxymethane-induced intestinal tumors by a crude ethyl acetate-extract and tryptanthrin extracted from Polygonum tinctorium Lour. Anticancer Research, 21, 3295–3300.

    CAS  Google Scholar 

  6. Micallef, M. J., Iwaki, K., Ishihara, T., Ushio, S., Aga, M., Kunikata, T., Koya-Miyata, S., Kimoto, T., Ikeda, M., Hino, K., & Kurimoto, M. (2002). The natural plant product tryptanthrin ameliorates dextran sodium sulfate-induced colitis in mice. International Immunopharmacology, 2, 565–578.

    Article  CAS  Google Scholar 

  7. Ishihara, T., Kohno, K., Ushio, S., Iwaki, K., Ikeda, M., & Kurimoto, M. (2000). Tryptanthrin inhibits nitric oxide and prostaglandin E2 synthesis by murine macrophages. European Journal of Pharmacology, 407, 197–204.

    Article  CAS  Google Scholar 

  8. Hashimoto, T., Aga, H., Chaen, H., Fukuda, S., & Kurimoto, M. (1999). Isolation and identification of anti-Helicobacter pylori compounds from Polygonum tinctorium Lour. Natural Medicines, 53, 27–31.

    CAS  Google Scholar 

  9. Kohda, H., Niwa, A., Nakamoto, Y., & Takeda, O. (1990). Flavonoid glucosides from Polygonum tinctorium. Chemical Pharmaceutical Bulletin, 38, 523–524.

    Article  CAS  Google Scholar 

  10. Kimura, H., Tokuyama, S., Ishihara, T., Ogawa, S., & Yokota, K. (2015). Identification of new flavonol O-glycosides from indigo (Polygonum tinctorium Lour) leaves and their inhibitory activity against 3-hydroxy-3-methylglutaryl-CoA reductase. Journal of Pharmaceutical and Biomedical Analysis, 108, 102–112.

    Article  CAS  Google Scholar 

  11. García-Mediavilla, V., Crespo, I., Collado, P. S., Esteller, A., Sánchez-Campos, S., Tuñón, M. J., & González-Gallego, J. (2007). The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappa B pathway in Chang Liver cells. European Journal of Pharmacology, 557, 221–229.

    Article  Google Scholar 

  12. Crespo, I., García-Mediavilla, M. V., Gutiérrez, B., Sánchez-Campos, S., Tuñón, M. J., & González-Gallego, J. (2008). A comparison of the effects of kaempferol and quercetin on cytokine-induced pro-inflammatory status of cultured human endothelial cells. British Journal of Nutrition, 100, 968–976.

    Article  CAS  Google Scholar 

  13. Ishihara, T., Okura, T., Kohno, K., Tanimoto, T., Ikegami, H., & Kurimoto, M. (2000). Polygonum tinctorium extract suppresses nitric oxide production by activated macrophages through inhibiting inducible nitric oxide synthase expression. Journal of Ethnopharmacology, 72, 141–150.

    Article  CAS  Google Scholar 

  14. Gonzales, G. B., Raes, K., Coelus, S., Struijs, K., Smagghe, G., & Camp, J. V. (2014). Ultra (high)-pressure liquid chromatography-electrospray ionization-time of flight-ion mobility-high definition mass spectrometry of the rapid identification and structural characterization of flavonoid glycosides from cauliflower waste. Journal of Chromatography A, 1323, 39–48.

    Article  CAS  Google Scholar 

  15. Julkunen-Tiitto, R. (1985). Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. Journal of Agricultural and Food Chemistry, 53, 213–217.

    Article  Google Scholar 

  16. Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. R. (1982). Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry, 126, 131–138.

    Article  CAS  Google Scholar 

  17. Watanabe, J., Oki, T., Takebayashi, J., & Takano-Ishikawa, Y. (2014). Extraction efficiency of hydrophilic and lipophilic antioxidants from lyophilized foods using pressurized liquid extraction and manual extraction. Journal of Food Science, 79, 1665–1671.

    Article  Google Scholar 

  18. Kimura, H., Ishihara, T., Michida, M., Ogawa, S., Akihiro, T., & Yokota, K. (2014). Identification and quantitative analysis of polyphenolic compounds from indigo plant (Polygonum tinctorium Lour). Natural Product Research, 7, 492–495.

    Article  Google Scholar 

  19. Takano-Ishikawa, Y., Goto, M., & Yamaki, K. (2006). Structure–activity relations of inhibitory effects of various flavonoids on lipopolysaccharide-induced prostaglandin E2 production in rat peritoneal macrophages: comparison between subclasses of flavonoids. Phytomedicine, 13, 310–317.

    Article  CAS  Google Scholar 

  20. Ishisaka, A., Kawabata, K., Miki, S., Shiba, Y., Minekawa, S., Nishikawa, T., Mukai, R., Terao, J., & Kawai, Y. (2013). Mitochondrial dysfunction leads to deconjugation of quercetin glucuronides in inflammatory macrophages. PloS One, 8, e80843.

    Article  Google Scholar 

  21. Mullen, W., Edwards, C. A., & Crozier, A. (2006). Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. British Journal of Nutrition, 96, 107–116.

    Article  CAS  Google Scholar 

  22. Perez-Vizcaino, F., Duarte, J., & Santos-Buelga, C. (2012). The flavonoid paradox: conjugation and deconjugation as key steps for the biological activity of flavonoids. Journal of the Science of Food and Agriculture, 92, 1822–1825.

    Article  CAS  Google Scholar 

  23. Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53, 4290–4302.

    Article  CAS  Google Scholar 

  24. Sökmen, M., Serkedjieva, J., Daferera, D., Gulluce, M., Polissiou, M., Tepe, B., Akpulat, A., Sahin, F., & Sökmen, A. (2004). In vitro antioxidant, antimicrobial, and antiviral activities of the essential oil and various extracts from herbal parts and callus cultures of Origanum acuities. Journal of Agricultural and Food Chemistry, 52, 3309–3311.

    Article  Google Scholar 

  25. Gharibi, S., Tabatabaei, B. E., Saeidi, G., & Goli, S. A. (2016). Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Applied Biochemistry and Biotechnology, 178, 796–809.

    Article  CAS  Google Scholar 

  26. Lau, C. S., Carrier, D. J., Howard, L. R., Lay Jr., J. O., Archambault, J. A., & Clausen, E. C. (2004). Extraction of antioxidant compounds from energy crops. Applied Biochemistry and Biotechnology, 114, 569–583.

    Article  Google Scholar 

  27. Lau, C. S., Carrier, D. J., Beitle, R. R., Howard, L. R., Lay Jr., J. O., Liyanage, R., & Clausen, E. C. (2005). A glycoside flavonoid in Kudzu (Pueraria lobata): identification, quantification, and determination of antioxidant activity. Applied Biochemistry and Biotechnology, 121-124, 783–794.

    Article  CAS  Google Scholar 

  28. Ekenseair, A., Duan, L., Carrier, J., Bransby, D. I., & Clausen, E. C. (2006). Extraction of hyperoside and quercitrin from mimosa (Albizia julibrissin) foliage. Applied Biochemistry and Biotechnology, 129-132, 382–391.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr. Yuko Nakamura at Applied Biotechnology, Food Research Institute Local Independent Administrative Institution Tottori Institute Industrial Technology, Sakaiminato, Tottori for instructing us the methods for the assays of NO synthesis and H-ORAC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazushige Yokota.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokuyama-Nakai, S., Kimura, H., Ishihara, T. et al. In Vitro Anti-inflammatory and Antioxidant Activities of 3,5,4′-Trihydroxy-6,7-Methylenedioxyflavone-O-Glycosides and Their Aglycone from Leaves of Polygonum tinctorium Lour. Appl Biochem Biotechnol 184, 414–431 (2018). https://doi.org/10.1007/s12010-017-2555-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2555-8

Keywords

Navigation