Skip to main content
Log in

Protein Engineering and Homologous Expression of Serratia marcescens Lipase for Efficient Synthesis of a Pharmaceutically Relevant Chiral Epoxyester

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The lipase isolated from Serratia marcescens (LipA) is a useful biocatalyst for kinetic resolution of a pharmaceutically relevant epoxyester, (±)-3-(4′-methoxyphenyl) glycidic acid methyl ester [(±)-MPGM], to afford optically pure (−)-MPGM, a key intermediate for the synthesis of diltiazem hydrochloride. Two mutants, LipAL315S and LipAS271F, were identified from the combinatorial saturation mutation library of 14 amino acid residues lining the substrate-binding pocket. LipAL315S, LipAS271F, and their combination LipAL315S/S271F showed 2.6-, 2.2-, and 4.6-fold improvements in their specific activities towards para-nitrophenyl butyrate (pNPB), respectively. Among these positive mutants, LipAS271F displayed a 3.5-fold higher specific activity towards the pharmaco substrate (±)-MPGM. Kinetic study showed that the improvement in catalytic efficiency of LipAS271F against (±)-MPGM was mainly resulted from the enhanced affinity between substrate and enzyme, as indicated by the decrease of K m. Furthermore, to address the insoluble expression issue in Escherichia coli, the homologous expression of LipA gene in S. marcescens was achieved by introducing it into an expression vector pUC18, resulting in ca. 20-fold higher lipase production. The significantly improved volumeric production and specific activity of S. marcescens lipase make it very attractive as a new-generation biocatalyst for more efficient and economical manufacturing of (−)-MPGM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 1

Similar content being viewed by others

References

  1. Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Production, purification, characterization, and applications of lipases. Biotechnology Advances, 19, 627–662.

    Article  CAS  Google Scholar 

  2. Anobom, C. D., Pinheiro, A. S., De-Andrade, R. A., Aguieiras, E. C. G., Andrade, G. C., Moura, M. V., Almeida, R. V., & Freire, D. M. (2014). From structure to catalysis: recent developments in the biotechnological applications of lipases. BioMed Research International, 2014, 1–11.

    Article  Google Scholar 

  3. Matsumae, H., Furui, M., & Shibatani, T. (1993). Lipase-catalyzed asymmetric hydrolysis of 3-phenylglycidic acid ester, the key intermediate in diltiazem hydrochloride. Journal of Fermentation and Bioengineering, 75, 93–98.

    Article  CAS  Google Scholar 

  4. Arpigny, J. L., & Jaeger, K. E. (1999). Bacterial lipolytic enzymes: classification and properties. Journal of Biochemistry, 343, 177–183.

    Article  CAS  Google Scholar 

  5. Long, Z. D., Xu, J. H., Zhao, L. L., Pan, J., Yang, S., & Hua, L. (2007). Overexpression of Serratia marcescens lipase in Escherichia coli for efficient bioresolution of racemic ketoprofen. Journal of Molecular Catalysis B: Enzymatic, 47, 105–110.

    Article  CAS  Google Scholar 

  6. Meier, R., Drepper, T., Svensson, V., Jaeger, K. E., & Baumann, U. (2007). A calcium-gated lid and a large β-roll sandwich are revealed by the crystal structure of extracellular lipase from Serratia marcescens. The Journal of Biological Chemistry, 282, 31477–31483.

    Article  CAS  Google Scholar 

  7. Cheng, M., Angkawidjaja, C., Koga, Y., & Kanaya, S. (2014). Calcium-independent opening of lid1 of a family I.3 lipase by a single Asp to Arg mutation at the calcium-binding site. Protein Engineering, 27, 169–176.

    Article  CAS  Google Scholar 

  8. Li, B. C., Yang, G. Y., Wu, L., & Feng, Y. (2012). Role of the nc-loop in catalytic activity and stability in lipase from Fervidobacterium changbaicum. PloS One, 7, e46881.

    Article  CAS  Google Scholar 

  9. Thomas, S., Holland, B., & Schmitt, L. (2014). The type 1 secretion pathway the hemolysin system and beyond. Biochimica et Biophysica Acta, 1843, 1629–1641.

    Article  CAS  Google Scholar 

  10. Mohammadi, M., Sepehrizadeh, Z., Ebrahim-Habibi, A., Shahverdi, A. R., Faramarzi, M. A., & Setayesh, N. (2015). Bacterial expression and characterization of an active recombinant lipase A from Serratia marcescens with truncated C-terminal region. Journal of Molecular Catalysis B: Enzymatic, 120, 84–92.

    Article  CAS  Google Scholar 

  11. Gao, L., Xu, J. H., Li, X. J., & Liu, Z. Z. (2004). Optimization of Serratia marcescens lipase production for enantioselective hydrolysis of 3-phenylglycidic acid ester. Journal of Industrial Microbiology & Biotechnology, 31, 525–530.

    Article  CAS  Google Scholar 

  12. Long, Z. D., Xu, J. H., & Pan, J. (2006). Immobilization and catalytic performance of Serratia marcescens lipase. Chinese Journal of Catalysis, 28, 175–179.

    Article  CAS  Google Scholar 

  13. Hu, B., Pan, J., Yu, H. L., Liu, J. W., & Xu, J. H. (2009). Immobilization of Serratia marcescens lipase onto amino-functionalized magnetic nanoparticles for repeated use in enzymatic synthesis of diltiazem intermediate. Process Biochemistry, 44, 1019–1024.

    Article  CAS  Google Scholar 

  14. Pan, J., Kong, X. D., Li, C. X., Ye, Q., Xu, J. H., & Imanaka, T. (2011). Crosslinking of enzyme coaggregate with polyethyleneimine: a simple and promising method for preparing stable biocatalyst of Serratia marcescens lipase. Journal of Molecular Catalysis B: Enzymatic, 68, 256–261.

    Article  CAS  Google Scholar 

  15. Li, S. X., Ma, Q., Lin, K., Wu, J. J., Wu, Y. X., & Xu, J. H. (2014). Essential role of Gly33 in a novel organic solvent-tolerant lipase from Serratia marcescens ECU1010 as determined by site-directed mutagenesis. Applied Biochemistry and Biotechnology, 172, 2945–2954.

    Article  CAS  Google Scholar 

  16. Bornscheuer, U. T., & Pohl, M. (2001). Improved biocatalysts by directed evolution and rational protein design. Current Opinion in Chemical Biology, 5, 137–143.

    Article  CAS  Google Scholar 

  17. Gumulya, Y., & Reetz, M. T. (2011). Enhancing the thermal robustness of an enzyme by directed evolution: least favorable starting points and inferior mutants can map superior evolutionary pathways. ChemBioChem, 12, 2502–2510.

    Article  CAS  Google Scholar 

  18. Akbulut, N., Ozturk, M. T., Pijning, T., Ozturk, S. I., & Gumusel, F. (2013). Improved activity and thermostability of Bacillus pumilus lipase by directed evolution. Journal of Biotechnology, 164, 123–129.

    Article  CAS  Google Scholar 

  19. Tracewell, C. A., & Arnold, F. H. (2009). Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Current Opinion in Chemical Biology, 13, 3–9.

    Article  CAS  Google Scholar 

  20. Piamtongkam, R., Duquesne, S., Bordes, F., Barbe, S., Andre’, I., Marly, A., & Chulalaksananukul, W. (2011). Enantioselectivity of Candida rugosa lipases (lip1, lip3, and lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid. Biotechnology and Bioengineering, 108, 1749–1756.

    Article  CAS  Google Scholar 

  21. Han, Z. L., Han, S. Y., Zheng, S. P., & Li, Y. (2009). Enhancing thermostability of a Rhizomucor miehei lipase by engineering a disulfide bond and displaying on the yeast cell surface. Applied Microbiology and Biotechnology, 85, 117–126.

    Article  CAS  Google Scholar 

  22. Henke, E., Bornscheuer, U. T., Schmid, R. D., & Pleiss, J. (2003). A molecular mechanism of enantiorecognition of tertiary alcohols by carboxylesterases. Chembiochem, 4, 485–493.

    Article  CAS  Google Scholar 

  23. Yang, J. K., Guo, D. Y., & Yan, Y. J. (2007). Cloning, expression and characterization of a novel thermal stable and short-chain alcohol tolerant lipase from Burkholderia cepacia strain G63. Journal of Molecular Catalysis B: Enzymatic, 45, 91–96.

    Article  CAS  Google Scholar 

  24. Reetz, M. T., & Jaeger, K. E. (1998). Overexpression, immobilization and biotechnological application of Pseudomonas lipases. Chemistry and Physics of Lipids, 93, 3–l4.

    Article  CAS  Google Scholar 

  25. Wang, Y., Zhao, J., Xu, J. H., Fan, L. Q., Li, S. X., Zhao, L. L., & Mao, X. B. (2010). Significantly improved expression and biochemical properties of recombinant Serratia marcescens lipase as robust biocatalyst for kinetic resolution of chiral ester. Applied Biochemistry and Biotechnology, 162, 2387–2399.

    Article  CAS  Google Scholar 

  26. Li, C. X., Jiang, X. C., Qiu, Y. J., & Xu, J. H. (2015). Identification of a new thermostable and alkali-tolerant α-carbonic anhydrase from Lactobacillus delbrueckii as a biocatalyst for CO2 biomineralization. Bioresour Bioprocess, 1, 1–14.

    CAS  Google Scholar 

  27. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785–2791.

    Article  CAS  Google Scholar 

  28. Zhao, L. L., Pan, J., & Xu, J. H. (2010). Efficient production of diltiazem chiral intermediate using immobilized lipase from Serratia marcescens. Biotechnology and Bioprocess Engineering, 15, 199–207.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21276082 & 21536004) and Shanghai Commission of Science and Technology (No. 15JC140040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-Xiu Li or Jian-He Xu.

Electronic supplementary materials

ESM 1

(DOC 645 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, KC., Zheng, MM., Pan, J. et al. Protein Engineering and Homologous Expression of Serratia marcescens Lipase for Efficient Synthesis of a Pharmaceutically Relevant Chiral Epoxyester. Appl Biochem Biotechnol 183, 543–554 (2017). https://doi.org/10.1007/s12010-017-2543-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2543-z

Keywords

Navigation