Skip to main content

Advertisement

Log in

Efficient Conversion of Fructose-Based Biomass into Lipids with Trichosporon fermentans Under Phosphate-Limited Conditions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Limiting nitrogen supply has been routinely used as the master regulator to direct lipid biosynthesis. However, this strategy does not work with nitrogen-rich substrates, such as Jerusalem artichoke (JA), a fructose-based biomass, while it is difficult to obtain a high carbon-to-nitrogen (C/N) molar ratio. In this study, an alternative strategy to promote lipid accumulation by the oleaginous yeast Trichosporon fermentans CICC 1368 was developed by limiting phosphorous supply, and this strategy was implemented with JA hydrolysate as substrate. We showed that lipid accumulation was directly correlated with the C/P ratio of the culture media for T. fermentans. The time course of cell growth and lipid production was analyzed in a media with an initial C/P ratio of 6342, and the cellular lipid content could reach up to 48.5% of dry biomass. Moreover, JA hydrolysates were used as substrate for microbial lipid accumulation, under high C/P molar ratio condition, lipid yield, lipid content, and lipid coefficient increased by 10, 30, and 34%, respectively. It showed that by limiting phosphorus, the conversion of sugar into lipids can be improved effectively. Limiting phosphorus provides a promising solution to the problem of microbial lipid production with nitrogen-rich natural materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Huang, C., Chen, X. F., Xiong, L., Chen, X. D., Ma, L. L., & Chen, Y. (2013). Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnology Advances, 31, 129–139.

    Article  CAS  Google Scholar 

  2. Jin, M., Slininger, P. J., Dien, B. S., et al. (2015). Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges. Trends in Biotechnology, 33, 43–54.

    Article  CAS  Google Scholar 

  3. Hu, C., Wu, S., Wang, Q., Jin, G., Shen, H., & Zhao, Z. K. (2011). Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum. Biotechnology for Biofuels, 4, 25.

    Article  CAS  Google Scholar 

  4. Liu, W., Wang, Y., Yu, Z., & Bao, J. (2012). Simultaneous saccharification and microbial lipid fermentation of corn stover by oleaginous yeast Trichosporon cutaneum. Bioresource Technology, 118, 13–18.

    Article  CAS  Google Scholar 

  5. Yu, X. C., Zheng, Y. B., Dorgan, K. M., & Chen, S. L. (2011). Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresource Technology, 102, 6134–6140.

    Article  CAS  Google Scholar 

  6. Tsigie, Y. A., Wang, C. Y., Truong, C. T., & Ju, Y. H. (2011). Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresource Technology, 102, 9216–9222.

    Article  CAS  Google Scholar 

  7. Guo, L., Zhang, J., Hu, F., Dy Ryu, D., & Bao, J. (2013). Consolidated bioprocessing of highly concentrated Jerusalem artichoke tubers for simultaneous saccharification and ethanol fermentation. Biotechnology and Bioengineering, 110, 2606–2615.

    Article  CAS  Google Scholar 

  8. Ratledge, C., & Wynn, J. P. (2002). The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advances in Applied Microbiology, 51, 1–51.

    Article  CAS  Google Scholar 

  9. Braunwald, T., Schwemmlein, L., Graeff-Honninger, S., French, W. T., Hernandez, R., Holmes, W. E., & Claupein, W. (2013). Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Applied Microbiology and Biotechnology, 97, 6581–6588.

    Article  CAS  Google Scholar 

  10. Li, Y. H., Zhao, Z. B., & Bai, F. W. (2007). High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme and Microbial Technology, 41, 312–317.

    Article  Google Scholar 

  11. Wu, S., Hu, C., Jin, G., Zhao, X., & Zhao, Z. K. (2010). Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresource Technology, 101, 6124–6129.

    Article  CAS  Google Scholar 

  12. Huang, C., Zong, M. H., Wu, H., & Liu, Q. P. (2009). Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresource Technology, 100, 4535–4538.

    Article  CAS  Google Scholar 

  13. Zhu, L. Y., Zong, M. H., & Wu, H. (2008). Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresource Technology, 99, 7881–7885.

    Article  CAS  Google Scholar 

  14. Meesters, P., Huijberts, G. N. M., & Eggink, G. (1996). High cell density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Applied Microbiology and Biotechnology, 45, 575–579.

    Article  CAS  Google Scholar 

  15. Gong, Z., Wang, Q., Shen, H., Hu, C., Jin, G., & Zhao, Z. K. (2012). Co-fermentation of cellobiose and xylose by Lipomyces starkeyi for lipid production. Bioresource Technology, 117, 20–24.

    Article  CAS  Google Scholar 

  16. Chen, P. S., Toribara, T. Y., & Warner, H. (1956). Microdetermina of phosphorus. Analytical Chemistry, 28, 1756–1758.

    Article  CAS  Google Scholar 

  17. Wang, H. X., Qin, L., Wang, Y., Zhou, D. Y., Song, S., Wang, X. S., & Zhu, B. W. (2014). Effects of heating conditions on fatty acids and volatile compounds in foot muscle of abalone Haliotis discus hannai Ino. Fisheries Science, 80, 1097–1107.

    Article  CAS  Google Scholar 

  18. Li, D. M., Zhou, D. Y., Zhu, B. W., et al. (2013). Effects of krill oil intake on plasma cholesterol and glucose levels in rats fed a high-cholesterol diet. Journal of the Science of Food and Agriculture, 93, 2669–2675.

    Article  CAS  Google Scholar 

  19. Papanikolaou, S., Galiotou-Panayotou, M., Fakas, S., Komaitis, M., & Aggelis, G. (2007). Lipid production by oleaginous Mucorales cultivated on renewable carbon sources. European Journal of Lipid Science and Technology, 109, 1060–1070.

    Article  CAS  Google Scholar 

  20. Yanyan, H. U. A., Xin, Z., Jin, Z., Sufang, Z., & Zongbao, Z. (2007). Lipid production by Rhodosporidium toruloides using Jerusalem artichoke tubers. J Chin Biotechnol, 27, 59–63.

    Google Scholar 

  21. Zhang, Z., Zhang, X., & Tan, T. (2014). Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation. Bioresource Technology, 157, 149–153.

    Article  CAS  Google Scholar 

  22. Dey, P., Banerjee, J., & Maiti, M. K. (2011). Comparative lipid profiling of two endophytic fungal isolates—Colletotrichum sp. and Alternaria sp. having potential utilities as biodiesel feedstock. Bioresource Technology, 102, 5815–5823.

    Article  CAS  Google Scholar 

  23. Wu, S., Zhao, X., Shen, H., Wang, Q., & Zhao, Z. K. (2011). Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions. Bioresource Technology, 102, 1803–1807.

    Article  CAS  Google Scholar 

  24. Ashekuzzaman, S. M., & Jiang, J. Q. (2014). Study on the sorption-desorption-regeneration performance of Ca-, Mg- and CaMg-based layered double hydroxides for removing phosphate from water. Chemical Engineering Journal, 246, 97–105.

    Article  CAS  Google Scholar 

  25. Xia, Z., Li, L., Feng, S., Cheng, H., & Wei, H. (2016). Clarifying the remelt syrup of brown granulated sugar by phosphate flocculating process. Chem Ind Eng Prog, 35, 2015–2020.

    Google Scholar 

  26. Wang, Y., Gong, Z., Yang, X., Shen, H., Wang, Q., Wang, J., & Zhao, Z. K. (2015). Microbial lipid production from pectin-derived carbohydrates by oleaginous yeasts. Process Biochemistry, 50, 1097–1102.

    Article  CAS  Google Scholar 

  27. Liu, B., & Zhao, Z. (2007). Biodiesel production by direct methanolysis of oleaginous microbial biomass. Journal of Chemical Technology and Biotechnology, 82, 775–780.

    Article  CAS  Google Scholar 

  28. Vicente, G., Bautista, L. F., Rodriguez, R., et al. (2009). Biodiesel production from biomass of an oleaginous fungus. Biochemical Engineering Journal, 48, 22–27.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support provided by the National Natural Science Foundation of China (31501464), the Natural Science Foundation of Liaoning Province (20170540057), the China Postdoctoral Science Foundation (2016M591419), and the Educational Commission of Liaoning Province of China (2016J018) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinping Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, R., Wu, X., Liu, S. et al. Efficient Conversion of Fructose-Based Biomass into Lipids with Trichosporon fermentans Under Phosphate-Limited Conditions. Appl Biochem Biotechnol 184, 113–123 (2018). https://doi.org/10.1007/s12010-017-2536-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2536-y

Keywords

Navigation