Skip to main content
Log in

Improvement of Lead Tolerance of Saccharomyces cerevisiae by Random Mutagenesis of Transcription Regulator SPT3

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bioremediation of heavy metal pollution with biomaterials such as bacteria and fungi usually suffer from limitations because of microbial sensitivity to high concentration of heavy metals. Herein, we adopted a novel random mutagenesis technique called RAISE to manipulate the transcription regulator SPT3 of Saccharomyces cerevisiae to improve cell lead tolerance. The best strain Mutant VI was selected from the random mutagenesis libraries on account of the growth performance, with higher specific growth rate than the control strain (0.068 vs. 0.040 h−1) at lead concentration as high as 1.8 g/L. Combined with the transcriptome analysis of S. cerevisiae, expressing the SPT3 protein was performed to make better sense of the global regulatory effects of SPT3. The data analysis revealed that 57 of S. cerevisiae genes were induced and 113 genes were suppressed, ranging from those for trehalose synthesis, carbon metabolism, and nucleotide synthesis to lead resistance. Especially, the accumulation of intracellular trehalose in S. cerevisiae under certain conditions of stress is considered important to lead resistance. The above results represented that SPT3 was acted as global transcription regulator in the exponential phase of strain and accordingly improved heavy metal tolerance in the heterologous host S. cerevisiae. The present study provides a route to complex phenotypes that are not readily accessible by traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Srivastava, S., Agrawal, S. B., & Mondal, M. K. (2015). A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environmental Science and Pollution Research, 22(20), 15386–15415.

    Article  PubMed  Google Scholar 

  2. Soares, E. V., & Soares, H. M. (2012). Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review. Environmental Science and Pollution Research, 19(4), 1066–1083.

    Article  PubMed  Google Scholar 

  3. Li, C., Xu, Y., Jiang, W., Dong, X., Wang, D., & Liu, B. (2013). Effect of NaCl on the heavy metal tolerance and bioaccumulation of Zygosaccharomyces rouxii and Saccharomyces cerevisiae. Bioresource Technology, 143, 46–52.

    Article  CAS  PubMed  Google Scholar 

  4. Hosiner, D., Gerber, S., Lichtenberg-Frate, H., Glaser, W., Schüller, C., & Klipp, E. (2014). Impact of acute metal stress in Saccharomyces cerevisiae. PloS One, 9(1), e83330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Safarik, I., Maderova, Z., Pospiskova, K., Baldikova, E., Horska, K., & Safarikova, M. (2015). Magnetically responsive yeast cells: methods of preparation and applications. Yeast, 32(1), 227–237.

    CAS  PubMed  Google Scholar 

  6. Alper, H., Moxley, J., Nevoigt, E., Fink, G. R., & Stephanopoulos, G. (2006). Engineering yeast transcription machinery for improved ethanol tolerance and production. Science, 314(5805), 1565–1568.

    Article  CAS  PubMed  Google Scholar 

  7. Liu, H., Liu, K., Yan, M., Xu, L., & Ouyang, P. (2011). gTME for improved adaptation of Saccharomyces cerevisiae to corn cob acid hydrolysate. Applied Biochemistry and Biotechnology, 164(7), 1150–1159.

    Article  CAS  PubMed  Google Scholar 

  8. Näär, A. M., Lemon, B. D., & Tjian, R. (2001). Transcriptional coactivator complexes. Annual Review of Biochemistry, 70(1), 475–501.

    Article  PubMed  Google Scholar 

  9. Daniel, J. A., & Grant, P. A. (2007). Multi-tasking on chromatin with the SAGA coactivator complexes. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 618(1), 135–148.

    Article  CAS  PubMed  Google Scholar 

  10. Timmers, H. T. M., & Tora, L. (2005). SAGA unveiled. Trends in Biochemical Sciences, 30(1), 7–10.

    Article  CAS  PubMed  Google Scholar 

  11. Bhaumik, S. R., & Green, M. R. (2001). SAGA is an essential in vivo target of the yeast acidic activator Gal4p. Genes & Development, 15(15), 1935–1945.

    Article  CAS  Google Scholar 

  12. Madison, J. M., & Winston, F. (1997). Evidence that Spt3 functionally interacts with Mot1, TFIIA, and TATA-binding protein to confer promoter-specific transcriptional control in Saccharomyces cerevisiae. Molecular and Cellular Biology, 17(1), 287–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu, P. Y. J., Ruhlmann, C., Winston, F., & Schultz, P. (2004). Molecular architecture of the S. cerevisiae SAGA complex. Molecular Cell, 15(2), 199–208.

    Article  CAS  PubMed  Google Scholar 

  14. van Oevelen, C. J., van Teeffelen, H. A., & Timmers, H. M. (2005). Differential requirement of SAGA subunits for Mot1p and Taf1p recruitment in gene activation. Molecular and Cellular Biology, 25(12), 4863–4872.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. James, N., Landrieux, E., & Collart, M. A. (2007). A SAGA-independent function of SPT3 mediates transcriptional deregulation in a mutant of the Ccr4-not complex in Saccharomyces cerevisiae. Genetics, 177(1), 123–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fujii, R., Kitaoka, M., & Hayashi, K. (2006). RAISE: a simple and novel method of generating random insertion and deletion mutations. Nucleic Acids Research, 34(4), e30–e30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Alper, H., Fischer, C., Nevoigt, E., & Stephanopoulos, G. (2005). Tuning genetic control through promoter engineering. Proceedings of the National Academy of Sciences of the United States of America, 102(36), 12678–12683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao, X., Jiang, L., Zhu, L., Xu, Q., Xu, X., & Huang, H. (2016). Tailoring of global transcription sigma D factor by random mutagenesis to improve Escherichia coli tolerance towards low-pHs. Journal of Biotechnology, 224, 55–63.

    Article  CAS  PubMed  Google Scholar 

  19. Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M., & Gilad, Y. (2008). RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Research, 18(9), 1509–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Basak, S., Geng, H., & Jiang, R. (2014). Rewiring global regulator cAMP receptor protein (CRP) to improve E. coli tolerance towards low pH. Journal of Biotechnology, 173, 68–75.

    Article  CAS  PubMed  Google Scholar 

  21. van Voorst, F., Houghton-Larsen, J., Jønson, L., Kielland-Brandt, M. C., & Brandt, A. (2006). Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast, 23(5), 351–359.

    Article  PubMed  CAS  Google Scholar 

  22. Madison, J. M., & Winston, F. (1998). Identification and analysis of homologues of Saccharomyces cerevisiae Spt3 suggest conserved functional domains. Yeast, 14(5), 409–417.

    Article  CAS  PubMed  Google Scholar 

  23. Biswas, D., Yu, Y., Prall, M., Formosa, T., & Stillman, D. J. (2005). The yeast FACT complex has a role in transcriptional initiation. Molecular and Cellular Biology, 25(14), 5812–5822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, X. J., Baase, W. A., Shoichet, B. K., Wilson, K. P., & Matthews, B. W. (1995). Enhancement of protein stability by the combination of point mutations in T4 lysozyme is additive. Protein Engineering, 8(10), 1017–1022.

    Article  CAS  PubMed  Google Scholar 

  25. Laprade, L., Rose, D., & Winston, F. (2007). Characterization of new Spt3 and TATA-binding protein mutants of Saccharomyces cerevisiae: Spt3–TBP allele-specific interactions and bypass of Spt8. Genetics, 177(4).

  26. Lee, T. I., Causton, H. C., Holstege, F. C., Shen, W. C., Hannett, N., Jennings, E. G., & Young, R. A. (2000). Redundant roles for the TFIID and SAGA complexes in global transcription. Nature, 405(6787), 701–704.

    Article  CAS  PubMed  Google Scholar 

  27. Ohtsuka, H., Azuma, K., Kubota, S., Murakami, H., Giga-Hama, Y., Tohda, H., & Aiba, H. (2012). Chronological lifespan extension by Ecl1 family proteins depends on Prr1 response regulator in fission yeast. Genes to Cells, 17(1), 39–52.

    Article  CAS  PubMed  Google Scholar 

  28. Walfridsson, M., Hallborn, J., Penttilä, M. E. R. J. A., Keränen, S. I. R. K. K. A., & Hahn-Hägerdal, B. (1995). Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Applied and Environmental Microbiology, 61(12), 4184–4190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shenton, D., & Grant, C. M. (2003). Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae. Biochemical Journal, 374(2), 513–519.

    Article  CAS  PubMed Central  Google Scholar 

  30. Morano, K. A., Grant, C. M., & Moye-Rowley, W. S. (2012). The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics, 190(4), 1157–1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Halladay, J. T., & Craig, E. A. (1995). A heat shock transcription factor with reduced activity suppresses a yeast HSP70 mutant. Molecular and Cellular Biology, 15(9), 4890–4897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ding, J., Huang, X., Zhang, L., Zhao, N., Yang, D., & Zhang, K. (2009). Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 85(2), 253–263.

    Article  CAS  PubMed  Google Scholar 

  33. Eisenmann, D. M., Arndt, K. M., Ricupero, S. L., Rooney, J. W., & Winston, F. (1992). SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. Genes & Development, 6(7), 1319–1331.

    Article  CAS  Google Scholar 

  34. Tapia, H., Young, L., Fox, D., Bertozzi, C. R., & Koshland, D. (2015). Increasing intracellular trehalose is sufficient to confer desiccation tolerance to Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 112(19), 6122–6127.

    Article  CAS  Google Scholar 

  35. Jiang, L., Lin, M., Zhang, Y., Li, Y., Xu, X., Li, S., & Huang, H. (2013). Identification and characterization of a novel trehalose synthase gene derived from saline-alkali soil metagenomes. PloS One, 8(10), e77437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiang, L., Cui, H., Zhu, L., Hu, Y., Xu, X., Li, S., & Huang, H. (2015). Enhanced propionic acid production from whey lactose with immobilized Propionibacterium acidipropionici and the role of trehalose synthesis in acid tolerance. Green Chemistry, 17(1), 250–259.

    Article  CAS  Google Scholar 

  37. Gibney, P. A., Schieler, A., Chen, J. C., Rabinowitz, J. D., & Botstein, D. (2015). Characterizing the in vivo role of trehalose in Saccharomyces cerevisiae using the AGT1 transporter. Proceedings of the National Academy of Sciences, 112(19), 6116–6121.

    Article  CAS  Google Scholar 

  38. Yoshiyama, Y., Tanaka, K., Yoshiyama, K., Hibi, M., Ogawa, J., & Shima, J. (2015). Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid. Journal of Bioscience and Bioengineering, 119(2), 172–175.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao, X. Q., & Bai, F. W. (2009). Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. Journal of Biotechnology, 144(1), 23–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation for Young Scholars of China (21506101, U1603112), the State Key Laboratory of Bio-organic and Natural Products Chemistry, CAS (SKLBNPC15429), the Six Talent Peaks Project in Jiangsu Province (2015-JY-009), and the Environmental Protection Project in Jiangsu Province (2015053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liying Zhu or Ling Jiang.

Electronic supplementary material

Table S1

(DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Gao, S., Zhang, H. et al. Improvement of Lead Tolerance of Saccharomyces cerevisiae by Random Mutagenesis of Transcription Regulator SPT3. Appl Biochem Biotechnol 184, 155–167 (2018). https://doi.org/10.1007/s12010-017-2531-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2531-3

Keywords

Navigation