Skip to main content
Log in

Cloning, Site-Directed Mutagenesis, and Functional Analysis of Active Residues in Lymantria dispar Chitinase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Chitinases are glycosyl hydrolases that catalyze the hydrolysis of β-(1,4)-glycosidic bonds in chitin, the major structural polysaccharide presented in the cuticle and gut peritrophic matrix of insects. Two aspartate residues (D143, D145) and one tryptophan (W146) in the Lymantria dispar chitinase are highly conserved residues observed within the second conserved motif of the family 18 chitinase catalytic region. In this study, a chitinase cDNA, LdCht5, was cloned from L. dispar, and the roles of the three residues were investigated using site-directed mutagenesis and substituting them with three other amino acids. Seven mutant proteins, D143E, D145E, W146G, D143E/D145E, D143E/W146G, D145E/W146G, and D143E/D145E/W146G, as well as the wild-type enzyme, were produced using the baculovirus-insect cell line expression system. The enzymatic and kinetic properties of these mutant enzymes were measured using the oligosaccharide substrate MU-(GlcNAc)3. Among the seven mutants, the D145E, D143E/D145E, and D145E/W146G mutations kept some extant catalytic activity toward MU-(GlcNAc)3, while the D143E, W146G, D143E/W146G, and D143E/D145E/W146G mutant enzymes were inactivated. Compared with the mutant enzymes, the wild-type enzyme had higher values of k cat and k cat / K m. A study of the multiple point mutations in the second conserved catalytic region would help to elucidate the role of the critical residues and their relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Matsuki, M., Kay, N., Serin, J., & Scott, J. K. (2011). Variation in the ability of larvae of phytophagous insects to develop on evolutionarily unfamiliar plants: a study with gypsy moth Lymantria dispar and eucalyptus. Agricultural and Forest Entomology, 13, 1–13.

    Article  Google Scholar 

  2. Peric-Mataruga, V., Hackenberger, B., Vlahovic, M., Ilijin, L., & Mrdakovic, M. (2014). Potential improvement of Lymantria dispar L. management by quercetin. Archives of Biological Sciences, 66, 1125–1129.

    Article  Google Scholar 

  3. Cao, C., Sun, L., Wen, R., Shang, Q., Ma, L., & Wang, Z. (2015). Characterization of the transcriptome of the asian gypsy moth Lymantria dispar identifies numerous transcripts associated with insecticide resistance. Pesticide Biochemistry and Physiology, 119, 54–61.

    Article  CAS  Google Scholar 

  4. Sahai, A. S., & Manocha, M. S. (1993). Chitinases of fungi and plants: their involvement in morphogenesis and host-parasite interaction. FEMS Microbiology Reviews, 11, 317–338.

    Article  CAS  Google Scholar 

  5. Kern, M. F., Maraschin, S. F., Vom, E. D., Schrank, A., Vainstein, M. H., & Pasquali, G. (2010). Expression of a chitinase gene from Metarhizium anisopliae in tobacco plants confers resistance against Rhizoctonia solani. Applied Biochemistry and Biotechnology, 160, 1933–1946.

    Article  CAS  Google Scholar 

  6. Tetreau, G., Cao, X., Chen, Y. R., Muthukrishnan, S., Jiang, H., & Blissard, G. W. (2015). Overview of chitin metabolism enzymes in Manduca sexta: identification, domain organization, phylogenetic analysis and gene expression. Insect Biochemistry and Molecular Biology, 62, 114–126.

    Article  CAS  Google Scholar 

  7. Zhang, J. Z., Zhang, X., Arakane, Y., Muthukrishnan, S., Kramer, K. J., & Ma, E. (2011). Identification and characterization of a novel chitinase-like gene cluster (Agcht5) possibly derived from tandem duplications in the African malaria mosquito, Anopheles gambiae. Insect Biochemistry and Molecular Biology, 41, 521–528.

    Article  CAS  Google Scholar 

  8. Kramer, K. J., & Koga, D. (1986). Insect chitin: physical state, synthesis, degradation and metabolic regulation. Insect Biochemistry, 16, 851–877.

    Article  CAS  Google Scholar 

  9. Arakane, Y., & Muthukrishnan, S. (2010). Insect chitinase and chitinase-like proteins. Cellular & Molecular Life Sciences CMLS, 67, 201–216.

    Article  CAS  Google Scholar 

  10. Kramer, K. J., & Muthukrishnan, S. (2005). Chitin metabolism in insects. In L. I. Gilbert, K. Iatrou, & S. S. Gill (Eds.), Comprehensive molecular insect science (Vol. 4, pp. 111–144). NY: Elsevier.

    Chapter  Google Scholar 

  11. Merzendorfer, H. (2013). Insect-derived chitinases. In A. Vilcinskas (Ed.), Yellow biotechnology II insect biotechnology in plant protection and industry. Adv. Biochem. Eng. Biotechnol (Vol. 136, pp. 19–50). Berlin: Springer-Verlag.

    Google Scholar 

  12. Wu, Q., Liu, T., & Yang, Q. (2013). Cloning, expression and biocharacterization of OfCht5, the chitinase from the insect, Ostrinia furnacalis. Insect Sci., 20, 147–157.

    Article  CAS  Google Scholar 

  13. Paek, A., Park, H. Y., & Jeong, S. E. (2012). Molecular cloning and functional expression of chitinase-encoding cDNA from the cabbage moth, Mamestra brassicae. Molecules and Cells, 33, 439–447.

    Article  CAS  Google Scholar 

  14. Zhang, J. Z., Zhang, X., Arakane, Y., Muthukrishnan, S., Kramer, K. J., & Ma, E. (2011). Comparative genomic analysis of chitinase and chitinase-like genes in the African malaria mosquito (Anopheles gambiae). PloS One, 6, e19899.

    Article  CAS  Google Scholar 

  15. Zhu, Q., Arakane, Y., Banerjee, D., Beeman, R. W., Kramer, K. J., & Muthukrishnan, S. (2008). Domain organization and phylogenetic analysis of the chitinase-like family of proteins in three species of insects. Insect Biochemistry and Molecular Biology, 38, 452–466.

    Article  CAS  Google Scholar 

  16. Xi, Y., Pan, P. L., Ye, Y. X., Yu, B., & Zhang, C. X. (2014). Chitin deacetylase family genes in the brown planthopper, Nilaparvata lugens, (Hemiptera: delphacidae). Insect Molecular Biology, 23, 695–705.

    Article  CAS  Google Scholar 

  17. Li, D., Zhang, J., Yan, W., Liu, X., Ma, E., & Yi, S. (2015). Two chitinase 5 genes from Locusta migratoria: molecular characteristics and functional differentiation. Insect Biochemistry and Molecular Biology, 58, 46–54.

    Article  CAS  Google Scholar 

  18. Zhu, Q. (2007). PhD thesis, Characterization of families of chitinase genes & proteins from Tribolium castaneum, Drosophila melanogaster and Anopheles gambiae. Kansas State University, Kansas, USA.

  19. Fan, X. J., Mi, Y. X., Ren, H., Zhang, C., Li, Y., & Xian, X. X. (2015). Cloning and functional expression of a chitinase cDNA from the apple leaf miner moth Lithocolletis ringoniella. Biochemistry, 80, 242–250.

    CAS  PubMed  Google Scholar 

  20. Zhang, H., Huang, X., Fukamizo, T., Muthukrishnan, S., & Kramer, K. J. (2002). Site-directed mutagenesis and functional analysis of an active site tryptophan of insect chitinase. Insect Biochemistry and Molecular Biology, 32, 1477–1488.

    Article  CAS  Google Scholar 

  21. Lu, Y., Zen, K. C., Muthukrishnan, S., & Kramer, K. J. (2002). Site-directed mutagenesis and functional analysis of active site acidic amino acid residues D142, D144 and E146 in Manduca sexta (tobacco hornworm) chitinase. Insect Biochemistry and Molecular Biology, 32, 1369–1382.

    Article  CAS  Google Scholar 

  22. Li, Y. L., Song, H. F., Zhang, X. Y., Li, D. Q., Zhang, T. T., Ma, E. B., & Zhang, J. Z. (2016). Heterologous expression and characterization of two chitinase 5 enzymes from the migratory locust Locusta migratoria. Insect Sci., 23, 406–416.

    Article  Google Scholar 

  23. Shinoda, T., Kobayashi, J., Matsui, M., & Chinzei, Y. (2001). Cloning and functional expression of a chitinase cDNA from the common cutworm, Spodoptera litura, using a recombinant baculovirus lacking the virus-encoded chitinase gene. Insect Biochemistry and Molecular Biology, 31, 521–532.

    Article  CAS  Google Scholar 

  24. Britton, H. T. S., & Robinson, R. A. (1931). Universal buffer solutions and the dissociation constant of veronal. Journal of the Chemical Society (Resumed), 458, 1456–1462.

    Article  Google Scholar 

  25. Ahmad, T., Rajagopal, R., & Bhatnagar, R. K. (2003). Molecular characterization of chitinase from polyphagous pest Helicoverpa armigera. Biochemical and Biophysical Research Communications, 310, 188–195.

    Article  CAS  Google Scholar 

  26. Papanikolau, Y., Prag, G., Tavlas, G., Vorgias, C. E., Oppenheim, A. B., & Petratos, K. (2001). High resolution structural analyses of mutant chitinase a complexes with substrates provide new insight into the mechanism of catalysis. Biochemistry, 40, 11338–11343.

    Article  CAS  Google Scholar 

  27. Watanabe, T., Uchida, M., Kobori, K., & Tanaka, H. (1994). Site-directed mutagenesis of the Asp-197 and Asp-202 residues in chitinase A1 of Bacillus circulans WL-12. Bioscience, Biotechnology, and Biochemistry, 58, 2283–2285.

    Article  CAS  Google Scholar 

  28. Lin, F. P., Chen, H. C., & Lin, C. S. (1999). Site-directed mutagenesis of asp313, glu 315 and asp 391 residues in chitinase of Aeromonas caviae. International Union of Biochemistry & Molecular Biology Life, 48, 199–204.

    Article  CAS  Google Scholar 

  29. Thomas, C. J., Gooday, G. W., King, L. A., & Possee, R. D. (2000). Mutagenesis of the active site coding region of the Autographa californica nucleopolyhedrovirus chiA gene. Journal of General Virology, 81, 1403–1411.

    CAS  Google Scholar 

  30. Huang, X., Zhang, H., Zen, K. C., Muthukrishnan, S., & Kramer, K. J. (2000). Homology modeling of the insect chitinase catalytic domain-oligosaccharide complex and the role of a putative active site tryptophan in catalysis. Insect Biochemistry and Molecular Biology, 30, 107–117.

    Article  CAS  Google Scholar 

  31. Watanabe, T., Kobori, K., Miyashita, K., Fujii, T., Sakai, H., & Uchida, M. (1993). Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity. Journal of Biological Chemistry, 268, 18567–18572.

    CAS  Google Scholar 

  32. Tull, D., & Withers, S. G. (1994). Mechanisms of cellulases and xylanases: a detailed kinetic study of the exo-beta-1, 4-glycanase from Cellulomonas fimi. Biochemistry, 33, 6363–6370.

    Article  CAS  Google Scholar 

  33. Joshi, M. D., Hedberg, A., & Mcintosh, L. P. (1997). Complete measurement of the pKa values of the carboxyl and imidazole groups in Bacillus circulans xylanase. Prorein Science, 6, 2667–2670.

    Article  CAS  Google Scholar 

  34. Gopalakrishnan, B., Muthukrishnan, S., & Kramer, K. J. (1995). Baculovirus mediated expression of a Manduca sexta, chitinase gene: properties of the recombinant protein. Insect Biochemistry and Molecular Biology, 25, 255–265.

    Article  CAS  Google Scholar 

  35. Arakane, Y., Zhu, Q., Matsumiya, M., Muthukrishnan, S., & Kramer, K. J. (2003). Properties of catalytic, linker and chitin-binding domains of insect chitinase. Insect Biochemistry and Molecular Biology, 33, 631–648.

    Article  CAS  Google Scholar 

  36. Zhu, Q., Arakane, Y., Beeman, R. W., Kramer, K. J., & Muthukrishnan, S. (2008). Characterization of recombinant chitinase-like proteins of Drosophila melanogaster and Tribolium castaneum. Insect Biochemistry and Molecular Biology, 38, 467–477.

    Article  CAS  Google Scholar 

  37. Du, X., & Liang, Y. (2004). Improved thermal stability of langmuir-blodgett films through an intermolecular hydrogen bond and metal complex. Journal of Chemical Physics, 120, 379.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 31101490) and Key Research and Development Project of Shanxi Province (Grant No. 201603D321094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Dong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, XJ., Yang, C., Zhang, C. et al. Cloning, Site-Directed Mutagenesis, and Functional Analysis of Active Residues in Lymantria dispar Chitinase. Appl Biochem Biotechnol 184, 12–24 (2018). https://doi.org/10.1007/s12010-017-2524-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2524-2

Keywords

Navigation