Skip to main content
Log in

Effect of UV-B Radiation and Desiccation Stress on Photoprotective Compounds Accumulation in Marine Leptolyngbya sp.

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Increased awareness regarding the harmful effects of ultraviolet (UV)-B radiation has led to the search for new sources of natural UV-B protecting compounds. Mycosporine-like amino acids are one of such promising compounds found in several organisms. Cyanobacteria are ideal organisms for isolation of these compounds due to their compatibility and adaptability to thrive under harsh environmental conditions. In the following investigation, we report the production of shinorine in Leptolyngbya sp. isolated from the intertidal region. Based on the spectral characteristics and liquid chromatography-mass spectrometry analysis, the UV-absorbing compound was identified as shinorine. To the best of our knowledge, this is the first report on the occurrence of shinorine in Leptolyngbya sp. We also investigated the effect of artificial UV-B radiation and periodic desiccation on chlorophyll-a, total carotenoids, and mycosporine-like amino acids (MAAs) production. The UV-B radiation had a negative effect on growth and chlorophyll concentration, whereas it showed an inductive effect on the production of total carotenoids and MAAs. Desiccation along with UV-B radiation led to an increase in the concentration of photoprotective compounds. These results indicate that carotenoids and MAAs thus facilitate cyanobacteria to avoid and protect themselves from the deleterious effects of UV-B and desiccation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McKenzie, R. L., Aucamp, P. J., Bais, A. F., Björn, L. O., Ilyas, M., & Madronich, S. (2011). Ozone depletion and climate change: impacts on UV radiation. Photochemical & Photobiological Science, 10, 182–198.

    CAS  Google Scholar 

  2. Wu, Y., Polvani, L. M., & Seager, R. (2013). The importance of the Montreal protocol in protecting Earth’s hydroclimate. Journal of Climate, 26, 4049–4068.

    Google Scholar 

  3. Häder, D. P., Kumar, H. D., Smith, R. C., & Worrest, R. C. (2007). Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochemical & Photobiological Science, 6, 267–285.

    Google Scholar 

  4. Sinha, R. P., & Häder, D. P. (2002). Life under solar UV radiation in aquatic organisms. Advances in Space Research, 30, 1547–1556.

    CAS  PubMed  Google Scholar 

  5. Rastogi, R. P., & Sinha, R. P. (2009). Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnology Advances, 27, 521–539.

    CAS  PubMed  Google Scholar 

  6. Rastogi, R. P., & Incharoensakdi, A. (2015). Occurrence and induction of a ultraviolet-absorbing substance in the cyanobacterium Fischerella muscicola TISTR8215. Phycological Research, 63, 51–55.

    CAS  Google Scholar 

  7. Schopf, J. W. (1996). Cyanobacteria: pioneers of the early Earth. Beihefte zur Nova Hedwigia, 112, 13–32.

    Google Scholar 

  8. Ehling-Schulz, M., & Scherer, S. (1999). UV protection in cyanobacteria. European Journal of Phycology, 34, 329–338.

    Google Scholar 

  9. Singh, S. P., Kumari, S., Rastogi, R. P., Singh, K. L., & Sinha, R. P. (2008a). Mycosporine-like amino acids (MAAs): chemical structure, biosynthesis and significance as UV-absorbing/screening compounds. Indian Journal of Experimental Biology, 46, 7–17.

    CAS  PubMed  Google Scholar 

  10. Shibata, K. (1969). Pigments and a UV-absorbing substance in corals and a blue-green alga living in the Great Barrier Reef. Plant and Cell Physiology, 10, 325–335.

    CAS  Google Scholar 

  11. Oren, A., & Gunde-Cimerman, N. (2007). Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiology Letters, 269, 1–10.

    CAS  PubMed  Google Scholar 

  12. Waditee-Sirisattha, R., Kageyama, H., Fukaya, M., Rai, V., & Takabe, T. (2015). Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica. FEMS Microbiology Letters, 362, fnv198.

    PubMed  Google Scholar 

  13. Richa, & Sinha, R. P. (2015). Biochemical characterization of sunscreening mycosporine-like amino acids from two Nostoc species inhabiting diverse habitats. Protoplasma, 252, 199–208.

    CAS  PubMed  Google Scholar 

  14. Abed, R. M., Polerecky, L., Al-Habsi, A., Oetjen, J., Strous, M., & de Beer, D. (2014). Rapid recovery of cyanobacterial pigments in desiccated biological soil crusts following addition of water. PloS One, 9, e112372.

    PubMed  PubMed Central  Google Scholar 

  15. Potts, M. (1999). Mechanisms of desiccation tolerance in cyanobacteria. European Journal of Phycology, 34, 319–328.

    Google Scholar 

  16. Potts, M. (1994). Desiccation tolerance of prokaryotes. Microbiological Reviews, 58, 755–805.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Karsten, U. (2002). Effects of salinity and ultraviolet radiation on the concentration of mycosporine-like amino acids in various isolates of the benthic cyanobacterium Microcoleus chthonoplastes. Phycological Research, 50, 129–134.

    CAS  Google Scholar 

  18. Gao, K., Yu, H., & Brown, M. T. (2007). Solar PAR and UV radiation affects the physiology and morphology of the cyanobacterium Anabaena sp. PCC 7120. Journal of Photochemistry and Photobiology B: Biology, 89, 117–124.

    CAS  Google Scholar 

  19. Pattanaik, B., Roleda, M. Y., Schumann, R., & Karsten, U. (2008). Isolate-specific effects of ultraviolet radiation on photosynthesis, growth and mycosporine-like amino acids in the microbial mat-forming cyanobacterium Microcoleus chthonoplastes. Planta, 227, 907–916.

    CAS  PubMed  Google Scholar 

  20. Desikachary, T. V. (1959). Cyanophyta. New Delhi: Indian Council of Agricultural Research.

    Google Scholar 

  21. Konstantinos, A., & Jiří, K. (1988). Modern approach to the classification system of cyanophytes. 3–Oscillatoriales. Algological Studies/ArchivfürHydrobiologie, Supplement Volumes, 50–53, 327–472.

  22. Nübel, U., Garcia-Pichel, F., & Muyzer, G. (1997). PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and Environmental Microbiology, 63, 3327–3332.

    PubMed  PubMed Central  Google Scholar 

  23. Klisch, M., & Häder, D. P. (2000). Mycosporine-like amino acids in the marine dinoflagellate Gyrodinium dorsum: induction by ultraviolet irradiation. Journal of Photochemistry and Photobiology B: Biology, 55, 178–182.

    CAS  Google Scholar 

  24. Rastogi, R. P., & Incharoensakdi, A. (2014). Characterization of UV-screening compounds, mycosporine-like amino acids, and scytonemin in the cyanobacterium Lyngbya sp. CU2555. FEMS Microbiology Ecology, 87, 244–256.

    CAS  PubMed  Google Scholar 

  25. Whitehead, K., & Hedges, J. I. (2002). Analysis of mycosporine-like amino acids in plankton by liquid chromatography electrospray ionization mass spectrometry. Marine Chemistry, 80, 27–39.

    CAS  Google Scholar 

  26. Fleming, E. D., & Castenholz, R. W. (2007). Effects of periodic desiccation on the synthesis of the UV-screening compound, scytonemin, in cyanobacteria. Environmental Microbiology, 9, 1448–1455.

    CAS  PubMed  Google Scholar 

  27. Sorokin, C., & Stein, J. (Eds.). (1973). Handbook of phycological methods: culture methods and growth measurement. Cambridge and New York: Cambridge University Press.

    Google Scholar 

  28. Mackinney, G. (1941). Absorption of light by chlorophyll solutions. The Journal of Biological Chemistry, 140, 315–322.

    CAS  Google Scholar 

  29. Jensen, A., Hellebust, J. A., & Craige, J. S. (Eds.). (1978). Handbook of phycological methods: physiological and biochemical methods. Cambridge: Cambridge University Press.

    Google Scholar 

  30. Foster, J. S., Green, S. J., Ahrendt, S. R., Golubic, S., Reid, R. P., Hetherington, K. L., & Bebout, L. (2009). Molecular and morphological characterization of cyanobacterial diversity in the stromatolites of Highborne Cay, Bahamas. The ISME Journal, 3, 573–587.

    CAS  PubMed  Google Scholar 

  31. Komárek, J. (2007). Phenotype diversity of the cyanobacterial genus Leptolyngbya in the maritime Antarctic. Polish Polar Research, 28, 211–231.

    Google Scholar 

  32. Bruno, L., Billi, D., Bellezza, S., & Albertano, P. (2009). Cytomorphological and genetic characterization of troglobitic Leptolyngbya strains isolated from Roman hypogea. Applied and Environmental Microbiology, 75, 608–617.

    CAS  PubMed  Google Scholar 

  33. Garcia-Pichel, F., & Castenholz, R. W. (1993). Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Applied and Environmental Microbiology, 59, 163–169.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Matsuyama, K., Matsumoto, J., Yamamoto, S., Nagasaki, K., Inoue, Y., Nishijima, M., & Mori, T. (2015). pH-independent charge resonance mechanism for UV protective functions of shinorine and related mycosporine-like amino acids. The Journal of Physical Chemistry, 119, 12722–12729.

    CAS  PubMed  Google Scholar 

  35. Volkmann, M., & Gorbushina, A. A. (2006). A broadly applicable method for extraction and characterization of mycosporines and mycosporine-like amino acids of terrestrial, marine and freshwater origin. FEMS Microbiology Letters, 255, 286–295.

    CAS  PubMed  Google Scholar 

  36. Lesser, M. P. (2008). Effects of ultraviolet radiation on productivity and nitrogen fixation in the cyanobacterium, Anabaena sp. (Newton’s strain). Hydrobiologia, 598, 1–9.

    CAS  Google Scholar 

  37. Worrest, R. C., Thomson, B. E., & Dyke, H. V. (1981). Impact of UV-B radiation upon estuarine microcosms. Photochemistry and Photobiology, 33, 861–867.

    Google Scholar 

  38. He, Y. Y., Klisch, M., & Häder, D. P. (2002). Adaptation of cyanobacteria to UV-B stress correlated with oxidative stress and oxidative damage. Photochemistry and Photobiology, 76, 188–196.

    CAS  PubMed  Google Scholar 

  39. Singh, S. P., Klisch, M., Häder, D. P., & Sinha, R. P. (2008b). Role of various growth media on shinorine (mycosporine-like amino acid) concentration and photosynthetic yield in Anabaena variabilis PCC 7937. World Journal of Microbiology and Biotechnology, 24, 3111–3115.

    CAS  Google Scholar 

  40. Hirschberg, J., & Chamovitz, D. (2006) Carotenoids in cyanobacteria. In: Bryant, D. A. (Ed.). The molecular biology of cyanobacteria (Vol. 1, pp 559–579). Dordrecht: Springer Science & Business Media.

  41. Rastogi, R. P., Madamwar, D., & Incharoensakdi, A. (2015). Sun-screening bioactive compounds mycosporine-like amino acids in naturally occurring cyanobacterial biofilms: role in photoprotection. Journal of Applied Microbiology, 119, 753–762.

    CAS  PubMed  Google Scholar 

  42. Sinha, R. P., Klisch, M., Helbling, E. W., & Häder, D. P. (2001). Induction of mycosporine-like amino acids (MAAs) in cyanobacteria by solar ultraviolet-B radiation. Journal of Photochemistry and Photobiology B: Biology, 60, 129–135.

    CAS  Google Scholar 

  43. Tirkey, J., & Adhikary, S. P. (2005). Cyanobacteria in biological soil crusts of India. Current Science-Bangalore, 89, 515.

    Google Scholar 

  44. Nishiyama, Y., Yamamoto, H., Allakhverdiev, S. I., Inaba, M., Yokota, A., & Murata, N. (2001). Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. The EMBO Journal, 20, 5587–5594.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. De la Coba, F., Aguilera, J., Figueroa, F. L., De Gálvez, M. V., & Herrera, E. (2009). Antioxidant activity of mycosporine-like amino acids isolated from three red macroalgae and one marine lichen. Journal of Applied Phycology, 21, 161–169.

    Google Scholar 

  46. Sindhu, E. R., Preethi, K. C., & RamadasanKuttan. (2010). Antioxidant activity of carotenoid lutein in vitro and in vivo. Indian Journal of Experimental Biology, 48, 843–848.

    CAS  PubMed  Google Scholar 

  47. Kelman, D., Ben-Amotz, A., & Berman-Frank. (2009). Carotenoids provide the major antioxidant defence in the globally significant N2-fixing marine cyanobacterium Trichodesmium. Environmental Microbiology, 11, 1897–1908.

    CAS  PubMed  Google Scholar 

  48. Shimidzu, N., Goto, M., & Miki, W. (1996). Carotenoids as singlet oxygen quenchers in marine organisms. Fisheries Science, 62, 134–137.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Director, CSIR-NIO, for the facilities provided and Dr. N. Ramaiah, Head, Biological Oceanography Division, for his constant support. Authors thank Mr. RM. Meena for the DNA sequencing, Mr. Areef Sardar for SEM analysis, Dr. Dattesh Desai for the Lux meter and Dr. Prabhat Kumar Sharma, Goa University for Digital Radiometer. Devika Joshi acknowledges the Council of Scientific and Industrial Research (CSIR), India, for the financial assistance in the form of Research Fellowship and support provided by Academy of Scientific and Innovative Research (AcSIR). The NIO contribution number is 6056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Mohandass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, D., Mohandass, C. & Dhale, M. Effect of UV-B Radiation and Desiccation Stress on Photoprotective Compounds Accumulation in Marine Leptolyngbya sp.. Appl Biochem Biotechnol 184, 35–47 (2018). https://doi.org/10.1007/s12010-017-2523-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2523-3

Keywords

Navigation