Skip to main content
Log in

Efficient Production of γ-GABA Using Recombinant E. coli Expressing Glutamate Decarboxylase (GAD) Derived from Eukaryote Saccharomyces cerevisiae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

γ-Aminobutyric acid (γ-GABA) is a non-proteinogenic amino acid, which acts as a major regulator in the central nervous system. Glutamate decarboxylase (namely GAD, EC 4.1.1.15) is known to be an ideal enzyme for γ-GABA production using L-glutamic acid as substrate. In this study, we cloned and expressed GAD gene from eukaryote Saccharomyces cerevisiae (ScGAD) in E. coli BL21(DE3). This enzyme was further purified and its optimal reaction temperature and pH were 37 °C and pH 4.2, respectively. The cofactor of ScGAD was verified to be either pyridoxal 5′-phosphate (PLP) or pyridoxal hydrochloride. The optimal concentration of either cofactor was 50 mg/L. The optimal medium for E. coli-ScGAD cultivation and expression were 10 g/L lactose, 5 g/L glycerol, 20 g/L yeast extract, and 10 g/L sodium chloride, resulting in an activity of 55 U/mL medium, three times higher than that of using Luria–Bertani (LB) medium. The maximal concentration of γ-GABA was 245 g/L whereas L-glutamic acid was near completely converted. These findings provided us a good example for bio-production of γ-GABA using recombinant E. coli expressing a GAD enzyme derived from eukaryote.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shelp, B. J., Bown, A. W., & McLean, M. D. (1999). Metabolism and functions of gamma-aminobutyric acid. Trends in Plant Science, 4(11), 446–452.

    Article  CAS  Google Scholar 

  2. Young, A. B., & Snyder, S. H. (1974). Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system. Proceedings of the National Academy of Sciences, 71(12), 4802–4807.

    Article  Google Scholar 

  3. Kinnersley, A. M., & Turano, F. J. (2000). Gamma aminobutyric acid (GABA) and plant responses to stress. Critical Reviews in Plant Sciences, 19(6), 479–509.

    Article  CAS  Google Scholar 

  4. Erlander, M. G., & Tobin, A. J. (1991). The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochemical Research, 16(3), 215–226.

    Article  CAS  Google Scholar 

  5. Yokoyama, S., Hiramatsu, J. I., & Hayakawa, K. (2002). Production of γ-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005. Journal of Bioscience and Bioengineering, 93, 95–97.

    Article  CAS  Google Scholar 

  6. Laroute, V., Yasaro, C., Narin, W., Mazzoli, R., Pessione, E., Cocaign-Bousquet, M., & Loubière, P. (2016). GABA production in Lactococcus lactis is enhanced by arginine and co-addition of malate. Frontiers in Microbiology, 7.

  7. Yang, S. Y., Lü, F. X., Lu, Z. X., Bie, X. M., Jiao, Y., Sun, L. J., & Yu, B. (2008). Production of γ-aminobutyric acid by Streptococcus salivarius subsp. thermophilus Y2 under submerged fermentation. Amino Acids, 34(3), 473–478.

    Article  CAS  Google Scholar 

  8. Van Dung Pham, S. S., Park, S. J., Lee, S. H., & Hong, S. H. (2016). Co-localization of GABA shunt enzymes for the efficient production of gamma-aminobutyric acid via GABA shunt pathway in Escherichia coli. Journal of Microbiology and Biotechnology, 26(4), 710–716.

    Article  CAS  Google Scholar 

  9. Okada, Y., Taniguchi, H., & Schimada, C. (1976). High concentration of GABA and high glutamate decarboxylase activity in rat pancreatic islets and human insulinoma. Science, 194(4265), 620–622.

    Article  CAS  Google Scholar 

  10. Yoshie, U. E. N. O., Hayakawa, K., & Takahashi, S. (1997). Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Bioscience, Biotechnology, and Biochemistry, 61(7), 1168–1171.

    Article  Google Scholar 

  11. Komatsuzaki, N., Nakamura, T., Kimura, T., & Shima, J. (2008). Characterization of glutamate decarboxylase from a high gamma-aminobutyric acid (GABA)-producer, Lactobacillus paracasei. Bioscience, Biotechnology, and Biochemistry, 72, 278–285.

    Article  CAS  Google Scholar 

  12. Fonda, M. L. (1985). L-glutamate decarboxylase from bacteria. Methods in Enzymology, 113, 11–16.

    Article  CAS  Google Scholar 

  13. Hao, R., & Schmit, J. C. (1991). Purification and characterization of glutamate decarboxylase from Neurospora crassa conidia. Journal of Biological Chemistry, 266, 5135–5139.

    CAS  Google Scholar 

  14. Seo, M. J., Nam, Y. D., Lee, S. Y., Park, S. L., YI, S. H., & Lim, S. I. (2013). Expression and characterization of a glutamate decarboxylase from Lactobacillus brevis 877G producing γ-aminobutyric acid. Bioscience, Biotechnology, and Biochemistry, 77, 853–856.

    Article  CAS  Google Scholar 

  15. Shin, S. M., Kim, H., Joo, Y., Lee, S. J., Lee, Y. J., Lee, S. J., & Lee, D. W. (2014). Characterization of glutamate decarboxylase from Lactobacillus plantarum and its C-terminal function for the pH dependence of activity. Journal of Agricultural and Food Chemistry, 62, 12186–12193.

    Article  CAS  Google Scholar 

  16. Nomura, M., Nakajima, I., Fujita, Y., Kobayashi, M., Kimoto, H., Suzuki, I., & Aso, H. (1999). Lactococcus lactis contains only one glutamate decarboxylase gene. Microbiology, 145, 1375–1380.

    Article  CAS  Google Scholar 

  17. Komatsuzaki, N., Shima, J., Kawamoto, S., Momose, H., & Kimura, T. (2005). Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiology, 22, 497–504.

    Article  CAS  Google Scholar 

  18. Sambrook, J., Fritseh, E., & Maniatis, T. (1989). Molecular cloning: a laboratory manual [M]. Kanazawa: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  19. Park, K. B., & Oh, S. H. (2007). Cloning, sequencing and expression of a novel glutamate decarboxylase gene from a newly isolated lactic acid bacterium, Lactobacillus brevis OPK-3. Bioresource Technology, 98, 312–319.

    Article  CAS  Google Scholar 

  20. Qi, W., et al. (2011). Enhanced γ-aminobutyric acid-forming activity of recombinant glutamate decarboxylase (gadA) from Escherichia coli. World Journal of Microbiology and Biotechnology, 27, 693–700.

    Article  Google Scholar 

  21. Wang, Q., Xin, Y., Zhang, F., Feng, Z., Fu, J., Luo, L., & Yin, Z. (2011). Enhanced γ-aminobutyric acid-forming activity of recombinant glutamate decarboxylase (gadA) from Escherichia coli. World Journal of Microbiology and Biotechnology, 27(3), 693–700.

    Article  Google Scholar 

  22. Kato, Y., Kato, Y., Furukawa, K., & Hara, S. (2002). Cloning and nucleotide sequence of the glutamate decarboxylase-encoding gene gadA from Aspergillus oryzae. Bioscience, Biotechnology, and Biochemistry, 66(12), 2600–2605.

    Article  CAS  Google Scholar 

  23. De Biase, D., Tramonti, A., Bossa, F., & Visca, P. (1999). The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Molecular Microbiology, 32(6), 1198–1211.

    Article  CAS  Google Scholar 

  24. Ma, D., Lu, P., & Shi, Y. (2013). Substrate selectivity of the acid-activated glutamate/γ-aminobutyric acid (GABA) antiporter GadC from Escherichia coli. Journal of Biological Chemistry, 288(21), 15148–15153.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (31400053 to Z. Xu), Natural Science Foundation of Jiangsu Province (BK20140933 to Z. Xu), Jiangsu Province Science and Technology Support Plan Project (BE2015366 to H. Xu), National Nature Science Foundation of China (21476112 to H. Xu), and National Basic Research Program of China (973) (2013CB733603 to H. Xu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Xu.

Electronic supplementary material

ESM 1

(DOC 4593 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Q., Xu, Z., Xu, L. et al. Efficient Production of γ-GABA Using Recombinant E. coli Expressing Glutamate Decarboxylase (GAD) Derived from Eukaryote Saccharomyces cerevisiae . Appl Biochem Biotechnol 183, 1390–1400 (2017). https://doi.org/10.1007/s12010-017-2506-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2506-4

Keywords

Navigation