Skip to main content
Log in

Effects of Salts Contained in Lignocellulose-Derived Sugar Streams on Microbial Lipid Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study aimed at developing low-cost, robust non-sterile fermentation processes for microbial lipid production from lignocellulose-derived sugars. Three representative oleaginous yeasts, Lipomyces tetrasporus (NRRL Y-11562), Rhodotorula toruloides (NRRL Y-1091), and Yarrowia lipolytica (NRRL YB-437), were tested for lipid production via non-sterile fermentation. Under optimal non-sterile conditions, all the tested strains had good performance on salt tolerance and lipid production. L. tetrasporus (NRRL Y-11562) gave the highest lipid titer of 12.79 g/L along with the depletion of both glucose and xylose, while Y. lipolytica (NRRL YB-437) showed the lowest lipid production and limited capability of xylose utilization. The key factors, including inoculation size, initial pH, and salt, all contributed to successful non-sterile fermentation. This study demonstrated that it is feasible to perform both sterile and non-sterile fermentation for lipid production using salt-containing lignocellulose-derived sugar streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Beopoulos, A., Nicaud, J.-M., & Gaillardin, C. (2011). An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Applied Microbiology and Biotechnology, 90, 1193–1206.

    Article  CAS  Google Scholar 

  2. Yang, B., & Wyman, C. E. (2008). Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2, 26–40.

    Article  CAS  Google Scholar 

  3. Jönsson, L. J., Alriksson, B., & Nilvebrant, N.-O. (2013). Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnology for Biofuels, 6, 1.

    Article  Google Scholar 

  4. Jin, M., Slininger, P. J., Dien, B. S., Waghmode, S., Moser, B. R., Orjuela, A., Sousa, L. D. C., & Balan, V. (2015). Microbial lipid-based lignocellulosic biorefinery: Feasibility and challenges. Trends in Biotechnology, 33, 43–54.

    Article  CAS  Google Scholar 

  5. Taskin, M., Ortucu, S., Aydogan, M. N., & Arslan, N. P. (2016). Lipid production from sugar beet molasses under non-aseptic culture conditions using the oleaginous yeast Rhodotorula glutinis TR29. Renewable Energy, 99, 198–204.

    Article  CAS  Google Scholar 

  6. Lin, J., Li, S., Sun, M., Zhang, C., Yang, W., Zhang, Z., Li, X., & Li, S. (2014). Microbial lipid production by oleaginous yeast in d-xylose solution using a two-stage culture mode. RSC Advances, 4, 34944–34949.

    Article  CAS  Google Scholar 

  7. Lin, J., Shen, H., Tan, H., Zhao, X., Wu, S., Hu, C., & Zhao, Z. K. (2011). Lipid production by Lipomyces starkeyi cells in glucose solution without auxiliary nutrients. Journal of Biotechnology, 152, 184–188.

    Article  CAS  Google Scholar 

  8. Singh, G., Jawed, A., Paul, D., Bandyopadhyay, K. K., Kumari, A., & Haque, S. (2016). Concomitant production of lipids and carotenoids in Rhodosporidium toruloides under osmotic stress using response surface methodology. Frontiers in Microbiology, 7, 1686.

    Google Scholar 

  9. Tchakouteu, S. S., Kopsahelis, N., Chatzifragkou, A., Kalantzi, O., Stoforos, N. G., Koutinas, A. A., Aggelis, G., & Papanikolaou, S. (2017). Rhodosporidium toruloides cultivated in NaCl-enriched glucose-based media: Adaptation dynamics and lipid production. Engineering in Life Sciences, 17, 237–248.

    Article  CAS  Google Scholar 

  10. Izard, J., & Limberger, R. J. (2003). Rapid screening method for quantitation of bacterial cell lipids from whole cells. Journal of Microbiological Methods, 55, 411–418.

    Article  CAS  Google Scholar 

  11. Dien, B. S., Slininger, P. J., Kurtzman, C. P., Moser, B. R., & O’Bryan, P. J. (2016). Identification of superior lipid producing Lipomyces and Myxozyma yeasts. AIMS Environmental Science, 3, 1–20.

    Article  Google Scholar 

  12. Sato, T. K., Liu, T., Parreiras, L. S., Williams, D. L., Wohlbach, D. J., Bice, B. D., Ong, I. M., Breuer, R. J., Qin, L., & Busalacchi, D. (2014). Harnessing genetic diversity in Saccharomyces cerevisiae for fermentation of xylose in hydrolysates of alkaline hydrogen peroxide-pretreated biomass. Applied and Environmental Microbiology, 80, 540–554.

    Article  Google Scholar 

  13. Uppugundla, N., da Costa Sousa, L., Chundawat, S. P., Yu, X., Simmons, B., Singh, S., Gao, X., Kumar, R., Wyman, C. E., Dale, B. E., & Balan, V. (2014). A comparative study of ethanol production using dilute acid, ionic liquid and AFEX™ pretreated corn stover. Biotechnology for Biofuels, 7, 72.

    Article  Google Scholar 

  14. Gao, Z., Ma, Y., Wang, Q., Zhang, M., Wang, J., & Liu, Y. (2016). Effect of crude glycerol impurities on lipid preparation by Rhodosporidium toruloides yeast 32489. Bioresource Technology, 218, 373–379.

    Article  CAS  Google Scholar 

  15. Xu, J., Zhao, X., Wang, W., Du, W., & Liu, D. (2012). Microbial conversion of biodiesel byproduct glycerol to triacylglycerols by oleaginous yeast Rhodosporidium toruloides and the individual effect of some impurities on lipid production. Biochemical Engineering Journal, 65, 30–36.

    Article  CAS  Google Scholar 

  16. Santamauro, F., Whiffin, F. M., Scott, R. J., & Chuck, C. J. (2014). Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnology for Biofuels, 7, 34.

    Article  Google Scholar 

  17. Ling, J., Nip, S., & Shim, H. (2013). Enhancement of lipid productivity of Rhodosporidium toruloides in distillery wastewater by increasing cell density. Bioresource Technology, 146, 301–309.

    Article  CAS  Google Scholar 

  18. Xue, Y.-P., Jin, M., Orjuela, A., Slininger, P. J., Dien, B. S., Dale, B. E., & Balan, V. (2015). Microbial lipid production from AFEX pretreated corn stover. RSC Advances, 5, 28725–28734.

    Article  CAS  Google Scholar 

  19. Tao, F., Miao, J. Y., Shi, G. Y., & Zhang, K. C. (2005). Ethanol fermentation by an acid-tolerant Zymomonas mobilis under non-sterilized condition. Process Biochemistry, 40, 183–187.

    Article  CAS  Google Scholar 

  20. Gong, Z., Shen, H., Wang, Q., Yang, X., Xie, H., & Zhao, Z. K. (2013). Efficient conversion of biomass into lipids by using the simultaneous saccharification and enhanced lipid production process. Biotechnology for Biofuels, 6, 36.

    Article  CAS  Google Scholar 

  21. Moustogianni, A., Bellou, S., Triantaphyllidou, I. E., & Aggelis, G. (2015). Feasibility of raw glycerol conversion into single cell oil by zygomycetes under non-aseptic conditions. Biotechnology and Bioengineering, 112, 827–831.

    Article  CAS  Google Scholar 

  22. Taskin, M., Saghafian, A., Aydogan, M. N., & Arslan, N. P. (2015). Microbial lipid production by cold adapted oleaginous yeast Yarrowia lipolytica B9 in non-sterile whey medium. Biofuels, Bioproducts and Biorefining, 9, 595–605.

    Article  CAS  Google Scholar 

  23. Liu, Z., Gao, Y., Chen, J., Imanaka, T., Bao, J., & Hua, Q. (2013). Analysis of metabolic fluxes for better understanding of mechanisms related to lipid accumulation in oleaginous yeast Trichosporon cutaneum. Bioresource Technology, 130, 144–151.

    Article  CAS  Google Scholar 

  24. Kurosawa, K., Boccazzi, P., de Almeida, N. M., & Sinskey, A. J. (2010). High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production. Journal of Biotechnology, 147, 212–218.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caixia Wan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Wan, C. Effects of Salts Contained in Lignocellulose-Derived Sugar Streams on Microbial Lipid Production. Appl Biochem Biotechnol 183, 1362–1374 (2017). https://doi.org/10.1007/s12010-017-2504-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2504-6

Keywords

Navigation