Skip to main content

Advertisement

Log in

Microbial Lipid Production from Enzymatic Hydrolysate of Pecan Nutshell Pretreated by Combined Pretreatment

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biodiesel is a fuel composed of monoalkyl esters of long-chain fatty acids derived from renewable biomass sources. In this study, biomass waste pecan nutshell (PS) was attempted to be converted into microbial oil. For effective utilization of PS, sequential pretreatment with ethylene glycol–H2SO4–water (78:2:20, wt:wt:wt) at 130 °C for 30 min and aqueous ammonia (25 wt%) at 50 °C for 24 h was used to enhance its enzymatic saccharification. Significant linear correlation was obtained about delignification-saccharification (R 2 = 0.9507). SEM and FTIR results indicated that combination pretreatment could effectively remove lignin and xylan in PS for promoting its enzymatic saccharification. After 72 h, the reducing sugars from the hydrolysis of 50 g/L pretreated PS by combination pretreatment could be obtained at 73.6% yield. Using the recovered PS hydrolysates containing 20 g/L glucose as carbon source, microbial lipids produced from the PS hydrolysates by Rhodococcus opacus ACCC41043. Four fatty acids including palmitic acid (C16:0; 23.1%), palmitoleic acid (C16:1; 22.4%), stearic acid (C18:0; 15.3%), and oleic acid (C18:1; 23.9%) were distributed in total fatty acids. In conclusion, this strategy has potential application in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chaturvedi, V., & Verma, P. (2013). An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech, 3, 415–431.

    Article  Google Scholar 

  2. Vázquez-Barrios, M. E., Martinez-Peniche, R., & Fernandez-Escartin, E. (2001). Development of toxigenic Aspergillus flavus and A. parasiticus on kernels of native pecan [Carya illinoensis (Wangenh) K. Koch] genotypes under different water activities. Scientia Horticulturae, 89, 155–169.

    Article  Google Scholar 

  3. Ranjithkumar, M., Ravikumar, R., Sankar, M. K., Kumar, M. N., & Thanabal, V. (2017). An effective conversion of cotton waste biomass to ethanol: a critical review on pretreatment processes. Waste Biomass Valori, 8, 57–68.

    Article  CAS  Google Scholar 

  4. Nghiem, N. P., Montanti, J., & Kim, T. H. (2016). Pretreatment of dried distiller grains with solubles by soaking in aqueous ammonia and subsequent enzymatic/dilute acid hydrolysis to produce fermentable sugars. Applied Biochemistry and Biotechnology, 179, 237–250.

    Article  CAS  Google Scholar 

  5. Singh, J., Suhag, M., & Dhaka, A. (2016). Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohyd Polym, 117, 624–631.

    Article  Google Scholar 

  6. Xu, F., Shi, Y. C., Wu, X., Theerarattananoon, K., Staggenborg, S., & Wang, D. (2011). Sulfuric acid pretreatment and enzymatic hydrolysis of photoperiod sensitive sorghum for ethanol production. Bioprocess and Biosystems Engineering, 34, 485–492.

    Article  CAS  Google Scholar 

  7. Hendriks, A. T., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18.

    Article  CAS  Google Scholar 

  8. Maurelli, L., Ionata, E., La Cara, F., & Morana, A. (2013). Chestnut shell as unexploited source of fermentable sugars: effect of different pretreatment methods on enzymatic saccharification. Applied Biochemistry and Biotechnology, 170, 1104–1118.

    Article  CAS  Google Scholar 

  9. Bose, S., Barnes, C. A., & Petrich, J. W. (2012). Enhanced stability and activity of cellulase in an ionic liquid and the effect of pretreatment on cellulose hydrolysis. Biotechnology and Bioengineering, 109, 434–343.

    Article  CAS  Google Scholar 

  10. Zhang, K., Pei, Z., & Wang, D. (2016). Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresource Technology, 199, 21–33.

    Article  CAS  Google Scholar 

  11. Sun, F., & Chen, H. (2008). Enhanced enzymatic hydrolysis of wheat straw by aqueous glycerol pretreatment. Bioresource Technology, 99, 6156–6161.

    Article  CAS  Google Scholar 

  12. Zhang, T., Zhou, Y., Liu, D., & Petrus, L. (2007). Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol. Bioresource Technology, 98, 1454–1459.

    Article  CAS  Google Scholar 

  13. Aita, G. A., Salvi, D., & Walker, M. S. (2011). Enzyme hydrolysis and ethanol fermentation of dilute ammonia pretreated energy cane. Bioresource Technology, 102, 4444–4448.

    Article  CAS  Google Scholar 

  14. Remond, C., Aubry, N., Cronier, D., Noel, S., Martel, F., Roge, B., Rakotoarivonina, H., Debeire, P., & Chabbert, B. (2010). Combination of ammonia and xylanase pretreatments: impact on enzymatic xylan and cellulose recovery from wheat straw. Bioresource Technology, 101(17), 6712–6717.

    Article  CAS  Google Scholar 

  15. Wang, J. F., Xin, D. L., Hou, X. C., Wu, J. Y., Fan, X. F., Li, K. N., & Zhang, J. H. (2016). Structural properties and hydrolysabilities of Chinese Pennisetum and hybrid Pennisetum: effect of aqueous ammonia pretreatment. Bioresource Technology, 199, 211–219.

    Article  CAS  Google Scholar 

  16. Qin, L., Liu, Z. H., Jin, M. J., Li, B. Z., & Yuan, Y. J. (2013). High temperature aqueous ammonia pretreatment and post-washing enhance the high solids enzymatic hydrolysis of corn stover. Bioresource Technology, 146, 504–511.

    Article  CAS  Google Scholar 

  17. Xie, S., Qin, X., Cheng, Y., Laskar, D., Qiao, W., Sun, S., Reyes, L., Wang, X., Dai, Y., Sattler, S., Kao, K., Yang, B., Zhang, X., & Yuan, J. S. (2015). Simultaneous conversion of all cell wall components by an oleaginous fungus without chemi-physical pretreatment. Green Chemistry, 17, 1657–1667.

    Article  CAS  Google Scholar 

  18. Li, A. T., Ngo, T. P. N., Yan, J. Y., Tian, K. Y., & Li, Z. (2012). Whole-cell based solvent-free system for one-pot production of biodiesel from waste grease. Bioresource Technology, 114, 725–729.

    Article  CAS  Google Scholar 

  19. He, Y. C., Li, X. L., Ben, H. X., Xue, X. Y., & Yang, B. (2017). Lipid production from dilute alkali corn stover lignin by Rhodococcus strains. ACS Sustainable Chemistry & Engineering. doi:10.1021/acssuschemeng.6b02627.

    Google Scholar 

  20. Karp, E. M., Resch, M. G., Donohoe, B. S., Ciesielski, P. N., O'Brien, M. H., Nill, J. E., Mittal, A., Biddy, M., & Beckham, G. T. (2015). Alkaline pretreatment of switchgrass. ACS Sustainable Chemistry & Engineering, 3(7), 1479–1491.

    Article  CAS  Google Scholar 

  21. Hodge, D. B., Karim, M. N., Schell, D. J., & McMillan, J. D. (2008). Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresource Technology, 99(18), 8940–8948.

    Article  CAS  Google Scholar 

  22. He, Y. C., Liu, F., Di, J. H., Ding, Y., Gao, D. Z., Zhang, D. P., Tao, Z. C., Chong, G. G., Huang, M. Z., & Ma, C. L. (2016). Effective pretreatment of dilute NaOH-soaked chestnut shell with glycerol-HClO4-water media: structural characterization, enzymatic saccharification, and ethanol fermentation. Bioprocess and Biosystems Engineering, 39, 533–543.

    Article  CAS  Google Scholar 

  23. Yang, B., & Wyman, C. E. (2006). BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnology and Bioengineering, 94, 611–617.

    Article  CAS  Google Scholar 

  24. Qian, J. F., Wang, W., Liu, S., & Yun, Z. (2008). In situ alkaline transesterification of cottonseed oil for production of biodiesel and nontoxic cottonseed meal. Bioresource Technology, 99, 9009–9012.

    Article  CAS  Google Scholar 

  25. de Carvalho, D. M., Sevastyanova, O., Penna, L. S., da Silva, B. P., Lindström, M. E., & Colodette, J. L. (2015). Assessment of chemical transformations in eucalyptus, sugarcane bagasse and straw during hydrothermal, dilute acid, and alkaline pretreatments. Industrial Crops and Products, 73, 118–126.

    Article  Google Scholar 

  26. Eliana, C., Jorge, R., Juan, P., & Luis, R. (2014). Effects of the pretreatment method on enzymatic hydrolysis and ethanol fermentability of the cellulosic fraction from elephant grass. Fuel, 118, 41–47.

    Article  CAS  Google Scholar 

  27. Petrova, P., & Invanova, V. (2010). Perspectives for the production of bioethanol from lignocellulosic materials. Biotechnol Biotec Eq, 24, 21–23.

    Google Scholar 

  28. Karki, B., Maurer, D., Box, S., Kim, T. H., & Jung, S. (2012). Ethanol production from soybean fiber, a co-product of aqueous oil extraction, using a soaking in aqueous ammonia pretreatment. Journal of the American Oil Chemists' Society, 89, 1345–1353.

    CAS  Google Scholar 

  29. Xu, J. X., He, B. F., Wu, B., Wang, B., Wang, C. H., & Hu, L. (2014). An ionic liquid tolerant cellulase derived from chemically polluted microhabitats and its application in in situ saccharification of rice straw. Bioresource Technology, 157, 166–173.

    Article  CAS  Google Scholar 

  30. Dien, L. Q., Phuong, N. T. M., Hoa, D. T., & Hoang, P. H. (2015). Efficient pretreatment of vietnamese rice straw by soda and sulfate cooking methods for enzymatic saccharification steam-exploded corn stover. Applied Biochemistry and Biotechnology, 175, 1536–1547.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (No. BM2012110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yucai He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Qian, H. & He, Y. Microbial Lipid Production from Enzymatic Hydrolysate of Pecan Nutshell Pretreated by Combined Pretreatment. Appl Biochem Biotechnol 183, 1336–1350 (2017). https://doi.org/10.1007/s12010-017-2501-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2501-9

Keywords

Navigation