Skip to main content
Log in

Signal Amplification Technologies for the Detection of Nucleic Acids: from Cell-Free Analysis to Live-Cell Imaging

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Due to their unique properties, such as programmability, ligand-binding capability, and flexibility, nucleic acids can serve as analytes and/or recognition elements for biosensing. To improve the sensitivity of nucleic acid-based biosensing and hence the detection of a few copies of target molecule, different modern amplification methodologies, namely target-and-signal-based amplification strategies, have already been developed. These recent signal amplification technologies, which are capable of amplifying the signal intensity without changing the targets’ copy number, have resulted in fast, reliable, and sensitive methods for nucleic acid detection. Working in cell-free settings, researchers have been able to optimize a variety of complex and quantitative methods suitable for deploying in live-cell conditions. In this study, a comprehensive review of the signal amplification technologies for the detection of nucleic acids is provided. We classify the signal amplification methodologies into enzymatic and non-enzymatic strategies with a primary focus on the methods that enable us to shift away from in vitro detecting to in vivo imaging. Finally, the future challenges and limitations of detection for cellular conditions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonicacid

AP:

Alkaline phosphatase

AuNPs:

Gold nanoparticles

bDNA:

Branched DNA

CHA:

Catalytic hairpin assembly

DNA:

Deoxyribonucleic acid

DSN:

Duplex-specific nuclease

dsDNA:

Double-stranded DNA

EDC:

Entropy-driven catalysis

FISH:

Fluorescence in situ hybridization

FRET:

Fluorescence resonance energy transfer

GO:

Graphene oxide

HCR:

Hybridization chain reaction

ISH:

In situ hybridization

LOD:

Limit of detection

LSPR:

Localized surface plasmon resonance

MB:

Molecular beacon

MMPs:

Magnetic microparticles

NC:

Nanocluster

PCR:

Polymerase chain reaction

PMP:

Polymer microparticles

PO:

Horseradish peroxidase

QDs:

Quantum dots

SERS:

Surface-enhanced Raman scattering

SNPs:

Single nucleotide polymorphisms

TSA:

Tyramid signal amplification

TSDRs:

Toehold-mediated DNA strand displacement reactions

References

  1. Noel, V., Piro, B., & Reisberg, S. (2015). In RNA Technologies: RNA and DNA Diagnostics (Erdmann, V. A., Jurga, S., Barciszewski, J., ed.), Springer International Publishing, pp 81–106.

  2. Song, Y., Gyarmati, P., Araújo, A. C., Lundeberg, J., Brumer III, H., & Ståhl, P. L. (2014). Visual detection of DNA on paper chips. Analytical Chemistry, 86(3), 1575–1582.

    Article  CAS  Google Scholar 

  3. Craw, P., & Balachandran, W. (2012). Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab on a Chip, 12(14), 2469–2486.

    Article  CAS  Google Scholar 

  4. Chakraborty, K., Veetil, A. T., Jaffrey, S. R., & Krishnan, Y. (2016). Nucleic acid-based nanodevices in biological imaging. Annual Review of Biochemistry, 85(1), 349–373.

    Article  CAS  Google Scholar 

  5. Jung, C., Allen, P., & Ellington, A. (2016). A stochastic DNA walker that traverses a microparticle surface. Nature Nanotechnology, 11(2), 157–163.

    Article  CAS  Google Scholar 

  6. Huang, Y., Shi, Y., Yang, H. Y., & Ai, Y. (2015). A novel single-layered MoS 2 nanosheet based microfluidic biosensor for ultrasensitive detection of DNA. Nanoscale, 7(6), 2245–2249.

    Article  CAS  Google Scholar 

  7. Donmez, S., Arslan, F., & Arslan, H. (2015). A nucleic acid biosensor for detection of hepatitis C virus genotype 1a using poly (l-glutamic acid)-modified electrode. Applied Biochemistry and Biotechnology, 176(5), 1431–1444.

    Article  CAS  Google Scholar 

  8. Ikbal, J., Lim, G. S., & Gao, Z. (2015). The hybridization chain reaction in the development of ultrasensitive nucleic acid assays. TrAC Trends in Analytical Chemistry, 64, 86–99.

    Article  CAS  Google Scholar 

  9. Wilson, I. G. (1997). Inhibition and facilitation of nucleic acid amplification. Applied and Environmental Microbiology, 63(10), 3741–3751.

    CAS  Google Scholar 

  10. Yan, L., Zhou, J., Zheng, Y., Gamson, A. S., Roembke, B. T., Nakayama, S., & Sintim, H. O. (2014). Isothermal amplified detection of DNA and RNA. Molecular BioSystems, 10(5), 970–1003.

    Article  CAS  Google Scholar 

  11. Elnifro, E. M., Ashshi, A. M., Cooper, R. J., & Klapper, P. E. (2000). Multiplex PCR: Optimization and application in diagnostic virology. Clinical Microbiology Reviews, 13(4), 559–570.

    Article  CAS  Google Scholar 

  12. Scrimin, P., & Prins, L. J. (2011). Sensing through signal amplification. Chemical Society Reviews, 40(9), 4488–4505.

    Article  CAS  Google Scholar 

  13. Duan, R., Lou, X., & Xia, F. (2016). The development of nanostructure assisted isothermal amplification in biosensors. Chemical Society Reviews, 45(6), 1738–1749.

    Article  CAS  Google Scholar 

  14. Zhao, H., Dong, J., Zhou, F., & Li, B. (2015). G-quadruplex-based homogenous fluorescence platform for ultrasensitive DNA detection through isothermal cycling and cascade signal amplification. Microchimica Acta, 182(15–16), 2495–2502.

    Article  CAS  Google Scholar 

  15. Zhao, Y., Chen, F., Li, Q., Wang, L., & Fan, C. (2015). Isothermal amplification of nucleic acids. Chemical Reviews, 115(22), 12491–12545.

    Article  CAS  Google Scholar 

  16. Kairdolf, B. A., Qian, X., & Nie, S. (2017). Bioconjugated nanoparticles for biosensing, in-vivo imaging, and medical diagnostics. Analytical Chemistry, 89(2), 1015–1031.

    Article  CAS  Google Scholar 

  17. Zhou, W., Gao, X., Liu, D., & Chen, X. (2015). Gold nanoparticles for in vitro diagnostics. Chemical Reviews, 115(19), 10575–10636.

    Article  CAS  Google Scholar 

  18. Chen, Y.-J., Groves, B., Muscat, R. A., & Seelig, G. (2015). DNA nanotechnology from the test tube to the cell. Nature Nanotechnology, 10(9), 748–760.

    Article  CAS  Google Scholar 

  19. Ravan, H. (2016). Isothermal RNA detection through the formation of DNA concatemers containing HRP-mimicking DNAzymes on the surface of gold nanoparticles. Biosensors and Bioelectronics, 80, 67–73.

    Article  CAS  Google Scholar 

  20. Wang, F., Flanagan, J., Su, N., Wang, L.-C., Bui, S., Nielson, A., Wu, X., Vo, H.-T., Ma, X.-J., & Luo, Y. (2012). RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. The Journal of Molecular Diagnostics, 14(1), 22–29.

    Article  CAS  Google Scholar 

  21. Qing, T., He, D., He, X., Wang, K., Xu, F., Wen, L., Shangguan, J., Mao, Z., & Lei, Y. (2016). Nucleic acid tool enzymes-aided signal amplification strategy for biochemical analysis: status and challenges. Analytical and Bioanalytical Chemistry, 408(11), 2793–2811.

    Article  CAS  Google Scholar 

  22. Wang, Y., Wang, Y., Ma, A.-J., Li, D.-X., Luo, L.-J., Liu, D.-X., Jin, D., Liu, K., & Ye, C.-Y. (2015). Rapid and sensitive isothermal detection of nucleic-acid sequence by multiple cross displacement amplification. Scientific Reports, 5, 11902.

  23. Gerasimova, Y. V., & Kolpashchikov, D. M. (2014). Enzyme-assisted target recycling (EATR) for nucleic acid detection. Chemical Society Reviews, 43(17), 6405–6438.

    Article  CAS  Google Scholar 

  24. Guo, Q., Yang, X., Wang, K., Tan, W., Li, W., Tang, H., & Li, H. (2009). Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction. Nucleic Acids Research, 37(3), e20.

    Article  CAS  Google Scholar 

  25. Welter, M., Verga, D., & Marx, A. (2016). Sequence-specific incorporation of enzyme–nucleotide chimera by DNA polymerases. Angewandte Chemie International Edition, 55(34), 10131–10135.

    Article  CAS  Google Scholar 

  26. Verga, D., Welter, M., & Marx, A. (2016). Sequence selective naked-eye detection of DNA harnessing extension of oligonucleotide-modified nucleotides. Bioorganic & Medicinal Chemistry Letters, 26(3), 841–844.

    Article  CAS  Google Scholar 

  27. Xu, M., He, Y., Gao, Z., Chen, G., & Tang, D. (2015). Isothermal cycling and cascade signal amplification strategy for ultrasensitive colorimetric detection of nucleic acids. Microchimica Acta, 182(1–2), 449–454.

    Article  CAS  Google Scholar 

  28. Zhang, M., Guan, Y.-M., & Ye, B.-C. (2011). Ultrasensitive fluorescence polarization DNA detection by target assisted exonuclease III-catalyzed signal amplification. Chemical Communications, 47(12), 3478–3480.

    Article  CAS  Google Scholar 

  29. Zuo, X., Xia, F., Xiao, Y., & Plaxco, K. W. (2010). Sensitive and selective amplified fluorescence DNA detection based on exonuclease III-aided target recycling. Journal of the American Chemical Society, 132(6), 1816–1818.

    Article  CAS  Google Scholar 

  30. Xuan, F., Luo, X., & Hsing, I.-M. (2012). Ultrasensitive solution-phase electrochemical molecular beacon-based DNA detection with signal amplification by exonuclease III-assisted target recycling. Analytical Chemistry, 84(12), 5216–5220.

    Article  CAS  Google Scholar 

  31. Zeng, Y., Qi, P., Wan, Y., & Zhang, D. (2016). Sensitive quantitative detection of bacterial DNA based on lysozyme signal probe and exo III-aided cycling amplification reaction. Sensors and Actuators B: Chemical, 231, 675–679.

    Article  CAS  Google Scholar 

  32. Gall, J. G., & Pardue, M. L. (1969). Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proceedings of the National Academy of Sciences, 63(2), 378–383.

    Article  CAS  Google Scholar 

  33. Zaidi, A. U., Enomoto, H., Milbrandt, J., & Roth, K. A. (2000). Dual fluorescent in situ hybridization and immunohistochemical detection with tyramide signal amplification. Journal of Histochemistry & Cytochemistry, 48(10), 1369–1375.

    Article  CAS  Google Scholar 

  34. Hauptmann, G., Lauter, G., & Söll, I. (2016). Detection and signal amplification in zebrafish RNA FISH. Methods, 98, 50–59.

    Article  CAS  Google Scholar 

  35. Bobrow, M. N., Shaughnessy, K. J., & Litt, G. J. (1991). Catalyzed reporter deposition, a novel method of signal amplification: II. Application to membrane immunoassays. Journal of Immunological Methods, 137(1), 103–112.

    Article  CAS  Google Scholar 

  36. Silahtaroglu, A. N., Nolting, D., Dyrskjøt, L., Berezikov, E., Møller, M., Tommerup, N., & Kauppinen, S. (2007). Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification. Nature Protocols, 2(10), 2520–2528.

    Article  CAS  Google Scholar 

  37. Min, X., Zhang, M., Huang, F., Lou, X., & Xia, F. (2016). Live cell microRNA imaging using exonuclease III-aided recycling amplification based on aggregation-induced emission luminogens. ACS Applied Materials & Interfaces, 8(14), 8998–9003.

    Article  CAS  Google Scholar 

  38. Yamaguchi, T., Fuchs, B. M., Amann, R., Kawakami, S., Kubota, K., Hatamoto, M., & Yamaguchi, T. (2015). Rapid and sensitive identification of marine bacteria by an improved in situ DNA hybridization chain reaction (quickHCR-FISH). Systematic and Applied Microbiology, 38(6), 400–405.

    Article  CAS  Google Scholar 

  39. Willner, I., Shlyahovsky, B., Zayats, M., & Willner, B. (2008). DNAzymes for sensing, nanobiotechnology and logic gate applications. Chemical Society Reviews, 37(6), 1153–1165.

    Article  CAS  Google Scholar 

  40. Hollenstein, M. (2015). DNA catalysis: the chemical repertoire of DNAzymes. Molecules, 20(11), 20777–20804.

    Article  CAS  Google Scholar 

  41. Cheng, H., Qiu, X., Zhao, X., Meng, W., Huo, D., & Wei, H. (2016). Functional nucleic acid probe for parallel monitoring K+ and protoporphyrin IX in living organisms. Analytical Chemistry, 88(5), 2937–2943.

    Article  CAS  Google Scholar 

  42. Sett, A., Das, S., & Bora, U. (2014). Functional nucleic-acid-based sensors for environmental monitoring. Applied Biochemistry and Biotechnology, 174(3), 1073–1091.

    Article  CAS  Google Scholar 

  43. Sando, S., Sasaki, T., Kanatani, K., & Aoyama, Y. (2003). Amplified nucleic acid sensing using programmed self-cleaving DNAzyme. Journal of the American Chemical Society, 125(51), 15720–15721.

    Article  CAS  Google Scholar 

  44. Shimron, S., Wang, F., Orbach, R., & Willner, I. (2011). Amplified detection of DNA through the enzyme-free autonomous assembly of hemin/G-quadruplex DNAzyme nanowires. Analytical Chemistry, 84(2), 1042–1048.

    Article  CAS  Google Scholar 

  45. Wang, F., Elbaz, J., Teller, C., & Willner, I. (2011). Amplified detection of DNA through an autocatalytic and catabolic DNAzyme-mediated process. Angewandte Chemie International Edition, 50(1), 295–299.

    Article  CAS  Google Scholar 

  46. Wang, F., Elbaz, J., & Willner, I. (2012). Enzyme-free amplified detection of DNA by an autonomous ligation DNAzyme machinery. Journal of the American Chemical Society, 134(12), 5504–5507.

    Article  CAS  Google Scholar 

  47. Li, Y., & Breaker, R. R. (1999). Phosphorylating DNA with DNA. Proceedings of the National Academy of Sciences, 96(6), 2746–2751.

    Article  CAS  Google Scholar 

  48. Zhao, X.-H., Gong, L., Zhang, X.-B., Yang, B., Fu, T., Hu, R., Tan, W., & Yu, R. (2013). Versatile DNAzyme-based amplified biosensing platforms for nucleic acid, protein, and enzyme activity detection. Analytical Chemistry, 85(7), 3614–3620.

    Article  CAS  Google Scholar 

  49. Mao, X., Simon, A. J., Pei, H., Shi, J., Li, J., Huang, Q., Plaxco, K. W., & Fan, C. (2016). Activity modulation and allosteric control of a scaffolded DNAzyme using a dynamic DNA nanostructure. Chemical Science, 7(2), 1200–1204.

    Article  CAS  Google Scholar 

  50. Guo, Z., Wang, J., & Wang, E. (2013). Signal-amplification detection of small molecules by use of Mg2+-dependent DNAzyme. Analytical and Bioanalytical Chemistry, 405(12), 4051–4057.

    Article  CAS  Google Scholar 

  51. Liu, B., Li, D., & Shang, H. (2014). General peroxidase activity of a parallel G-quadruplex-hemin DNAzyme formed by Pu39WT-a mixed G-quadruplex forming sequence in the Bcl-2 P1 promoter. Chemistry Central Journal, 8(1), 1.

    Article  CAS  Google Scholar 

  52. Yang Y, Huang J, Yang X, Quan K, Wang H, Ying L, Xie N, Ou M, & Wang K. (2016). Aptazyme–gold nanoparticle sensor for amplified molecular probing in living cells. Analytical chemistry, 88(11), 5981–5987.

  53. Luo, M., Chen, X., Zhou, G., Xiang, X., Chen, L., Ji, X., & He, Z. (2012). Chemiluminescence biosensors for DNA detection using graphene oxide and a horseradish peroxidase-mimicking DNAzyme. Chemical Communications, 48(8), 1126–1128.

    Article  CAS  Google Scholar 

  54. Xu, M., Gao, Z., Wei, Q., Chen, G., & Tang, D. (2015). Hemin/G-quadruplex-based DNAzyme concatamers for in situ amplified impedimetric sensing of copper (II) ion coupling with DNAzyme-catalyzed precipitation strategy. Biosensors and Bioelectronics, 74, 1–7.

    Article  CAS  Google Scholar 

  55. Wang, Q., Song, Y., Chai, Y., Pan, G., Li, T., Yuan, Y., & Yuan, R. (2014). Electrochemical immunosensor for detecting the spore wall protein of Nosema bombycis based on the amplification of hemin/G-quadruplex DNAzyme concatamers functionalized Pt@ Pd nanowires. Biosensors and Bioelectronics, 60, 118–123.

    Article  CAS  Google Scholar 

  56. Zhang, Y., Li, B., & Jin, Y. (2011). Label-free fluorescent detection of thrombin using G-quadruplex-based DNAzyme as sensing platform. Analyst, 136(16), 3268–3273.

    Article  CAS  Google Scholar 

  57. Golub, E., Freeman, R., & Willner, I. (2013). Hemin/G-quadruplex-catalyzed aerobic oxidation of thiols to disulfides: application of the process for the development of sensors and aptasensors and for probing acetylcholine esterase activity. Analytical Chemistry, 85(24), 12126–12133.

    Article  CAS  Google Scholar 

  58. Lu, C.-H., Wang, F., & Willner, I. (2012). Zn2+-ligation DNAzyme-driven enzymatic and nonenzymatic cascades for the amplified detection of DNA. Journal of the American Chemical Society, 134(25), 10651–10658.

    Article  CAS  Google Scholar 

  59. Wei, L., Wang, X., Wu, D., Li, C., Yin, Y., & Li, G. (2016). Proximity ligation-induced assembly of DNAzymes for simple and cost-effective colourimetric detection of proteins with high sensitivity. Chemical Communications, 52(32), 5633–5636.

    Article  CAS  Google Scholar 

  60. Li, D., Cheng, W., Yan, Y., Zhang, Y., Yin, Y., Ju, H., & Ding, S. (2016). A colorimetric biosensor for detection of attomolar microRNA with a functional nucleic acid-based amplification machine. Talanta, 146, 470–476.

    Article  CAS  Google Scholar 

  61. Li, X., Cheng, W., Li, D., Wu, J., Ding, X., Cheng, Q., & Ding, S. (2016). A novel surface plasmon resonance biosensor for enzyme-free and highly sensitive detection of microRNA based on multi component nucleic acid enzyme (MNAzyme)-mediated catalyzed hairpin assembly. Biosensors and Bioelectronics, 80, 98–104.

    Article  CAS  Google Scholar 

  62. Huang, Y., Lei, J., Cheng, Y., & Ju, H. (2015). Target-assistant Zn2+-dependent DNAzyme for signal-on electrochemiluminescent biosensing. Electrochimica Acta, 155, 341–347.

    Article  CAS  Google Scholar 

  63. Torabi, S.-F., Wu, P., McGhee, C. E., Chen, L., Hwang, K., Zheng, N., Cheng, J., & Lu, Y. (2015). In vitro selection of a sodium-specific DNAzyme and its application in intracellular sensing. Proceedings of the National Academy of Sciences, 112(19), 5903–5908.

    Article  CAS  Google Scholar 

  64. Du, Y., Li, B., Guo, S., Zhou, Z., Zhou, M., Wang, E., & Dong, S. (2011). G-quadruplex-based DNAzyme for colorimetric detection of cocaine: using magnetic nanoparticles as the separation and amplification element. Analyst, 136(3), 493–497.

    Article  CAS  Google Scholar 

  65. Tian, T., Peng, S., Xiao, H., Zhang, X., Guo, S., Wang, S., Zhou, X., Liu, S., & Zhou, X. (2013). Highly sensitive detection of telomerase based on a DNAzyme strategy. Chemical Communications, 49(26), 2652–2654.

    Article  CAS  Google Scholar 

  66. Garai-Ibabe, G., Möller, M., Saa, L., Grinyte, R., & Pavlov, V. (2014). Peroxidase-mimicking DNAzyme modulated growth of CdS nanocrystalline structures in situ through redox reaction: application to development of genosensors and aptasensors. Analytical Chemistry, 86(20), 10059–10064.

    Article  CAS  Google Scholar 

  67. Yehl, K., Joshi, J. P., Greene, B. L., Dyer, R. B., Nahta, R., & Salaita, K. (2012). Catalytic deoxyribozyme-modified nanoparticles for RNAi-independent gene regulation. ACS Nano, 6(10), 9150–9157.

    Article  CAS  Google Scholar 

  68. Wu, P., Hwang, K., Lan, T., & Lu, Y. (2013). A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. Journal of the American Chemical Society, 135(14), 5254–5257.

    Article  CAS  Google Scholar 

  69. Li, L., Feng, J., Fan, Y., & Tang, B. (2015). Simultaneous imaging of Zn2+ and Cu2+ in living cells based on DNAzyme modified gold nanoparticle. Analytical Chemistry, 87(9), 4829–4835.

    Article  CAS  Google Scholar 

  70. Zhang, P., He, Z., Wang, C., Chen, J., Zhao, J., Zhu, X., Li, C.-Z., Min, Q., & Zhu, J.-J. (2014). In situ amplification of intracellular microRNA with MNAzyme nanodevices for multiplexed imaging, logic operation, and controlled drug release. ACS Nano, 9(1), 789–798.

    Article  CAS  Google Scholar 

  71. Thompson, D. G., Enright, A., Faulds, K., Smith, W. E., & Graham, D. (2008). Ultrasensitive DNA detection using oligonucleotide-silver nanoparticle conjugates. Analytical Chemistry, 80(8), 2805–2810.

    Article  CAS  Google Scholar 

  72. Doria, G., Conde, J., Veigas, B., Giestas, L., Almeida, C., Assunção, M., Rosa, J., & Baptista, P. V. (2012). Noble metal nanoparticles for biosensing applications. Sensors, 12(2), 1657–1687.

    Article  CAS  Google Scholar 

  73. Liong, M., Lu, J., Kovochich, M., Xia, T., Ruehm, S. G., Nel, A. E., Tamanoi, F., & Zink, J. I. (2008). Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano, 2(5), 889–896.

    Article  CAS  Google Scholar 

  74. Cao, X., Ye, Y., & Liu, S. (2011). Gold nanoparticle-based signal amplification for biosensing. Analytical Biochemistry, 417(1), 1–16.

    Article  CAS  Google Scholar 

  75. Adams, N. M., Jackson, S. R., Haselton, F. R., & Wright, D. W. (2011). Design, synthesis, and characterization of nucleic-acid-functionalized gold surfaces for biomarker detection. Langmuir, 28(2), 1068–1082.

    Article  CAS  Google Scholar 

  76. Chen, G., Roy, I., Yang, C., & Prasad, P. N. (2016). Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chemical Reviews, 116(5), 2826–2885.

    Article  CAS  Google Scholar 

  77. Song, Y., Wang, X., Zhao, C., Qu, K., Ren, J., & Qu, X. (2010). Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chemistry–A European Journal, 16(12), 3617–3621.

    Article  CAS  Google Scholar 

  78. Mo, L., Li, J., Liu, Q., Qiu, L., & Tan, W. (2017). Nucleic acid-functionalized transition metal nanosheets for biosensing applications. Biosensors and Bioelectronics, 89, 201–211.

    Article  CAS  Google Scholar 

  79. Gao, W., Dong, H., Lei, J., Ji, H., & Ju, H. (2011). Signal amplification of streptavidin–horseradish peroxidase functionalized carbon nanotubes for amperometric detection of attomolar DNA. Chemical Communications, 47(18), 5220–5222.

    Article  CAS  Google Scholar 

  80. Issa, B., Obaidat, I. M., Albiss, B. A., & Haik, Y. (2013). Magnetic nanoparticles: surface effects and properties related to biomedicine applications. International Journal of Molecular Sciences, 14(11), 21266–21305.

    Article  CAS  Google Scholar 

  81. Austin, L. A., Mackey, M. A., Dreaden, E. C., & El-Sayed, M. A. (2014). The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Archives of Toxicology, 88(7), 1391–1417.

    Article  CAS  Google Scholar 

  82. Saha, K., Agasti, S. S., Kim, C., Li, X., & Rotello, V. M. (2012). Gold nanoparticles in chemical and biological sensing. Chemical Reviews, 112(5), 2739–2779.

    Article  CAS  Google Scholar 

  83. Nam, J.-M., Stoeva, S. I., & Mirkin, C. A. (2004). Bio-bar-code-based DNA detection with PCR-like sensitivity. Journal of the American Chemical Society, 126(19), 5932–5933.

    Article  CAS  Google Scholar 

  84. Hill, H. D., & Mirkin, C. A. (2006). The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nature Protocols, 1(1), 324–336.

  85. Dong, H., Meng, X., Dai, W., Cao, Y., Lu, H., Zhou, S., & Zhang, X. (2015). Highly sensitive and selective microRNA detection based on DNA-bio-bar-code and enzyme-assisted strand cycle exponential signal amplification. Analytical Chemistry, 87(8), 4334–4340.

    Article  CAS  Google Scholar 

  86. Cui, H.-F., Xu, T.-B., Sun, Y.-L., Zhou, A.-W., Cui, Y.-H., Liu, W., & Luong, J. H. (2015). Hairpin DNA as a biobarcode modified on gold nanoparticles for electrochemical DNA detection. Analytical Chemistry, 87(2), 1358–1365.

    Article  CAS  Google Scholar 

  87. Chen, S., Chu, L. T., Yeung, P. P., Zhao, Z., Bao, Y., Chan, M. S., Lo, P. K., & Chen, T.-H. (2015). Enzyme-free amplification by nano sticky balls for visual detection of ssDNA/RNA oligonucleotides. ACS Applied Materials & Interfaces, 7(41), 22821–22830.

    Article  CAS  Google Scholar 

  88. Bi, S., Ji, B., Zhang, Z., & Zhang, S. (2013). A chemiluminescence imaging array for the detection of cancer cells by dual-aptamer recognition and bio-bar-code nanoprobe-based rolling circle amplification. Chemical Communications, 49(33), 3452–3454.

    Article  CAS  Google Scholar 

  89. Meng, X., Zhou, Y., Liang, Q., Qu, X., Yang, Q., Yin, H., & Ai, S. (2013). Electrochemical determination of microRNA-21 based on bio bar code and hemin/G-quadruplet DNAenzyme. Analyst, 138(12), 3409–3415.

    Article  CAS  Google Scholar 

  90. Chen, M., Bi, S., Jia, X., & He, P. (2014). Aptamer-conjugated bio-bar-code Au–Fe 3 O 4 nanoparticles as amplification station for electrochemiluminescence detection of tumor cells. Analytica Chimica Acta, 837, 44–51.

    Article  CAS  Google Scholar 

  91. Edwards, K. A., & Baeumner, A. J. (2006). Liposomes in analyses. Talanta, 68(5), 1421–1431.

    Article  CAS  Google Scholar 

  92. Alizadeh-Ghodsi, M., Zavari-Nematabad, A., Hamishehkar, H., Akbarzadeh, A., Mahmoudi-Badiki, T., Zarghami, F., Moghaddam, M. P., Alipour, E., & Zarghami, N. (2016). Design and development of PCR-free highly sensitive electrochemical assay for detection of telomerase activity using Nano-based (liposomal) signal amplification platform. Biosensors and Bioelectronics, 80, 426–432.

    Article  CAS  Google Scholar 

  93. Chumbimuni-Torres, K. Y., Wu, J., Clawson, C., Galik, M., Walter, A., Flechsig, G.-U., Bakker, E., Zhang, L., & Wang, J. (2010). Amplified potentiometric transduction of DNA hybridization using ion-loaded liposomes. Analyst, 135(7), 1618–1623.

    Article  CAS  Google Scholar 

  94. Zhou, F., & Li, B. (2015). Exonuclease III-assisted target recycling amplification coupled with liposome-assisted amplification: one-step and dual-amplification strategy for highly sensitive fluorescence detection of DNA. Analytical Chemistry, 87(14), 7156–7162.

    Article  CAS  Google Scholar 

  95. Bui, M.-P. N., Ahmed, S., & Abbas, A. (2015). Single-digit pathogen and attomolar detection with the naked eye using liposome-amplified plasmonic immunoassay. Nano Letters, 15(9), 6239–6246.

    Article  CAS  Google Scholar 

  96. Wu, J., Tan, L. H., Hwang, K., Xing, H., Wu, P., Li, W., & Lu, Y. (2014). DNA sequence-dependent morphological evolution of silver nanoparticles and their optical and hybridization properties. Journal of the American Chemical Society, 136(43), 15195–15202.

    Article  CAS  Google Scholar 

  97. Dong, H., Gao, W., Yan, F., Ji, H., & Ju, H. (2010). Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Analytical Chemistry, 82(13), 5511–5517.

    Article  CAS  Google Scholar 

  98. Li, R.-D., Wang, Q., Yin, B.-C., & Ye, B.-C. (2016). Enzyme-free detection of sequence-specific microRNAs based on nanoparticle-assisted signal amplification strategy. Biosensors and Bioelectronics, 77, 995–1000.

    Article  CAS  Google Scholar 

  99. Cho, I.-H., Bhunia, A., & Irudayaraj, J. (2015). Rapid pathogen detection by lateral-flow immunochromatographic assay with gold nanoparticle-assisted enzyme signal amplification. International Journal of Food Microbiology, 206, 60–66.

    Article  CAS  Google Scholar 

  100. Degliangeli, F., Kshirsagar, P., Brunetti, V., Pompa, P. P., & Fiammengo, R. (2014). Absolute and direct microRNA quantification using DNA–gold nanoparticle probes. Journal of the American Chemical Society, 136(6), 2264–2267.

    Article  CAS  Google Scholar 

  101. Ambrosi, A., Airo, F., & Merkoçi, A. (2009). Enhanced gold nanoparticle based ELISA for a breast cancer biomarker. Analytical Chemistry, 82(3), 1151–1156.

    Article  CAS  Google Scholar 

  102. He, Y., Zeng, K., Gurung, A. S., Baloda, M., Xu, H., Zhang, X., & Liu, G. (2010). Visual detection of single-nucleotide polymorphism with hairpin oligonucleotide-functionalized gold nanoparticles. Analytical Chemistry, 82(17), 7169–7177.

    Article  CAS  Google Scholar 

  103. Mao, X., Ma, Y., Zhang, A., Zhang, L., Zeng, L., & Liu, G. (2009). Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Analytical Chemistry, 81(4), 1660–1668.

    Article  CAS  Google Scholar 

  104. Quesada-González, D., & Merkoçi, A. (2015). Nanoparticle-based lateral flow biosensors. Biosensors and Bioelectronics, 73, 47–63.

    Article  CAS  Google Scholar 

  105. Wu, Y., Kwak, K. J., Agarwal, K., Marras, A., Wang, C., Mao, Y., Huang, X., Ma, J., Yu, B., & Lee, R. (2013). Detection of extracellular RNAs in cancer and viral infection via tethered cationic lipoplex nanoparticles containing molecular beacons. Analytical Chemistry, 85(23), 11265–11274.

    Article  CAS  Google Scholar 

  106. Cui, L., Lin, X., Lin, N., Song, Y., Zhu, Z., Chen, X., & Yang, C. J. (2012). Graphene oxide-protected DNA probes for multiplex microRNA analysis in complex biological samples based on a cyclic enzymatic amplification method. Chemical Communications, 48(2), 194–196.

    Article  CAS  Google Scholar 

  107. Seferos, D. S., Giljohann, D. A., Hill, H. D., Prigodich, A. E., & Mirkin, C. A. (2007). Nano-flares: probes for transfection and mRNA detection in living cells. Journal of the American Chemical Society, 129(50), 15477–15479.

    Article  CAS  Google Scholar 

  108. Prigodich, A. E., Seferos, D. S., Massich, M. D., Giljohann, D. A., Lane, B. C., & Mirkin, C. A. (2009). Nano-flares for mRNA regulation and detection. ACS Nano, 3(8), 2147–2152.

    Article  CAS  Google Scholar 

  109. Yang, Y., Huang, J., Yang, X., Quan, K., Wang, H., Ying, L., Xie, N., Ou, M., & Wang, K. (2015). FRET nanoflares for intracellular mRNA detection: avoiding false positive signals and minimizing effects of system fluctuations. Journal of the American Chemical Society, 137(26), 8340–8343.

    Article  CAS  Google Scholar 

  110. Shi, J., Zhou, M., Gong, A., Li, Q., Wu, Q., Cheng, G. J., Yang, M., & Sun, Y. (2016). Fluorescence lifetime imaging of nanoflares for mRNA detection in living cells. Analytical Chemistry, 88(4), 1979–1983.

    Article  CAS  Google Scholar 

  111. Halo, T. L., McMahon, K. M., Angeloni, N. L., Xu, Y., Wang, W., Chinen, A. B., Malin, D., Strekalova, E., Cryns, V. L., & Cheng, C. (2014). NanoFlares for the detection, isolation, and culture of live tumor cells from human blood. Proceedings of the National Academy of Sciences, 111(48), 17104–17109.

    Article  CAS  Google Scholar 

  112. Li, J., & Zhu, J.-J. (2013). Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst, 138(9), 2506–2515.

    Article  CAS  Google Scholar 

  113. Arap, W., Pasqualini, R., Montalti, M., Petrizza, L., Prodi, L., Rampazzo, E., Zaccheroni, N., & Marchiò, S. (2013). Luminescent silica nanoparticles for cancer diagnosis. Current Medicinal Chemistry, 20(17), 2195–2211.

    Article  CAS  Google Scholar 

  114. Wang, F., Lu, C.-H., & Willner, I. (2014). From cascaded catalytic nucleic acids to enzyme–DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chemical Reviews, 114(5), 2881–2941.

    Article  CAS  Google Scholar 

  115. Zhang, D. Y., & Seelig, G. (2011). Dynamic DNA nanotechnology using strand-displacement reactions. Nature Chemistry, 3(2), 103–113.

    Article  CAS  Google Scholar 

  116. Ravan, H. (2015). Translating nucleic-acid hybridization into universal DNA-reporter sequences. TrAC Trends in Analytical Chemistry, 65, 97–106.

    Article  CAS  Google Scholar 

  117. Seeman, N. C. (1982). Nucleic acid junctions and lattices. Journal of Theoretical Biology, 99(2), 237–247.

    Article  CAS  Google Scholar 

  118. Zadegan, R. M., & Norton, M. L. (2012). Structural DNA nanotechnology: from design to applications. International Journal of Molecular Sciences, 13(6), 7149–7162.

    Article  CAS  Google Scholar 

  119. Pei, H., Lu, N., Wen, Y., Song, S., Liu, Y., Yan, H., & Fan, C. (2010). A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing. Advanced Materials, 22(42), 4754–4758.

    Article  CAS  Google Scholar 

  120. Li, J., Mo, L., Lu, C.-H., Fu, T., Yang, H.-H., & Tan, W. (2016). Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chemical Society Reviews, 45(5), 1410–1431.

    Article  CAS  Google Scholar 

  121. Zhang, F., Nangreave, J., Liu, Y., & Yan, H. (2014). Structural DNA nanotechnology: state of the art and future perspective. Journal of the American Chemical Society, 136(32), 11198–11211.

    Article  CAS  Google Scholar 

  122. Thacker, V. V., Herrmann, L. O., Sigle, D. O., Zhang, T., Liedl, T., Baumberg, J. J., & Keyser, U. F. (2014). DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nature communications, 5, 3448.

  123. Ma, D.-L., He, H.-Z., Chan, D. S.-H., & Leung, C.-H. (2013). Simple DNA-based logic gates responding to biomolecules and metal ions. Chemical Science, 4(9), 3366–3380.

    Article  CAS  Google Scholar 

  124. Liu, S., Su, W., Li, Z., & Ding, X. (2015). Electrochemical detection of lung cancer specific microRNAs using 3D DNA origami nanostructures. Biosensors and Bioelectronics, 71, 57–61.

    Article  CAS  Google Scholar 

  125. Khimji, I., Kelly, E. Y., Helwa, Y., Hoang, M., & Liu, J. (2013). Visual optical biosensors based on DNA-functionalized polyacrylamide hydrogels. Methods, 64(3), 292–298.

    Article  CAS  Google Scholar 

  126. Xiong, X., Wu, C., Zhou, C., Zhu, G., Chen, Z., & Tan, W. (2013). Responsive DNA-based hydrogels and their applications. Macromolecular Rapid Communications, 34(16), 1271–1283.

    Article  CAS  Google Scholar 

  127. Helwa, Y., Dave, N., Froidevaux, R., Samadi, A., & Liu, J. (2012). Aptamer-functionalized hydrogel microparticles for fast visual detection of mercury (II) and adenosine. ACS Applied Materials & Interfaces, 4(4), 2228–2233.

    Article  CAS  Google Scholar 

  128. Lu, C.-H., Qi, X.-J., Orbach, R., Yang, H.-H., Mironi-Harpaz, I., Seliktar, D., & Willner, I. (2013). Switchable catalytic acrylamide hydrogels cross-linked by hemin/G-quadruplexes. Nano Letters, 13(3), 1298–1302.

    Article  CAS  Google Scholar 

  129. Le Goff, G. C., Srinivas, R. L., Hill, W. A., & Doyle, P. S. (2015). Hydrogel microparticles for biosensing. European Polymer Journal, 72, 386–412.

    Article  CAS  Google Scholar 

  130. Baeissa, A., Dave, N., Smith, B. D., & Liu, J. (2010). DNA-functionalized monolithic hydrogels and gold nanoparticles for colorimetric DNA detection. ACS Applied Materials & Interfaces, 2(12), 3594–3600.

    Article  CAS  Google Scholar 

  131. Collins, M. L., Irvine, B., Tyner, D., Fine, E., Zayati, C., Chang, C.-a., Horn, T., Ahle, D., Detmer, J., & Shen, L.-P. (1997). A branched DNA signal amplification assay for quantification of nucleic acid targets below 100 molecules/ml. Nucleic Acids Research, 25(15), 2979–2984.

    Article  CAS  Google Scholar 

  132. Tsongalis, G. J. (2006). Branched DNA technology in molecular diagnostics. American Journal of Clinical Pathology, 126(3), 448–453.

    Article  CAS  Google Scholar 

  133. Liu, P., Yang, X., Sun, S., Wang, Q., Wang, K., Huang, J., Liu, J., & He, L. (2013). Enzyme-free colorimetric detection of DNA by using gold nanoparticles and hybridization chain reaction amplification. Analytical Chemistry, 85(16), 7689–7695.

    Article  CAS  Google Scholar 

  134. Dirks, R. M., & Pierce, N. A. (2004). Triggered amplification by hybridization chain reaction. Proceedings of the National Academy of Sciences of the United States of America, 101(43), 15275–15278.

    Article  CAS  Google Scholar 

  135. Jung, C., & Ellington, A. D. (2014). Diagnostic applications of nucleic acid circuits. Accounts of Chemical Research, 47(6), 1825–1835.

    Article  CAS  Google Scholar 

  136. Huang, J., Su, X., & Li, Z. (2012). Enzyme-free and amplified fluorescence DNA detection using bimolecular beacons. Analytical Chemistry, 84(14), 5939–5943.

    Article  CAS  Google Scholar 

  137. Huang, J., Wu, Y., Chen, Y., Zhu, Z., Yang, X., Yang, C. J., Wang, K., & Tan, W. (2011). Pyrene-excimer probes based on the hybridization chain reaction for the detection of nucleic acids in complex biological fluids. Angewandte Chemie International Edition, 50(2), 401–404.

    Article  CAS  Google Scholar 

  138. Li, B., Jiang, Y., Chen, X., & Ellington, A. D. (2012). Probing spatial organization of DNA strands using enzyme-free hairpin assembly circuits. Journal of the American Chemical Society, 134(34), 13918–13921.

    Article  CAS  Google Scholar 

  139. Trifonov, A., Sharon, E., Tel-Vered, R., Kahn, J.S., Willner, I. (2016). Application of the hybridization chain reaction on electrodes for the amplified and parallel electrochemical analysis of DNA. The Journal of Physical Chemistry C.

  140. Yang, X., Yu, Y., & Gao, Z. (2014). A highly sensitive plasmonic DNA assay based on triangular silver nanoprism etching. ACS Nano, 8(5), 4902–4907.

    Article  CAS  Google Scholar 

  141. Huang, F., Xu, P., & Liang, H. (2014). Using dual-polarization interferometry to study surface-initiated DNA hybridization chain reactions in real time. Biosensors and Bioelectronics, 51, 317–323.

    Article  CAS  Google Scholar 

  142. Zhang, D. Y., Turberfield, A. J., Yurke, B., & Winfree, E. (2007). Engineering entropy-driven reactions and networks catalyzed by DNA. Science, 318(5853), 1121–1125.

    Article  CAS  Google Scholar 

  143. Eckhoff, G., Codrea, V., Ellington, A. D., & Chen, X. (2010). Beyond allostery: catalytic regulation of a deoxyribozyme through an entropy-driven DNA amplifier. Journal of Systems Chemistry, 1(1), 13–19.

  144. Lv, Y., Cui, L., Peng, R., Zhao, Z., Qiu, L., Chen, H., Jin, C., Zhang, X.-B., & Tan, W. (2015). Entropy beacon: a hairpin-free DNA amplification strategy for efficient detection of nucleic acids. Analytical Chemistry, 87(23), 11714–11720.

    Article  CAS  Google Scholar 

  145. Ravan, H. (2016). Implementing a two-layer feed-forward catalytic DNA circuit for enzyme-free and colorimetric detection of nucleic acids. Analytica Chimica Acta, 910, 68–74.

    Article  CAS  Google Scholar 

  146. Zong, Y., Liu, F., Zhang, Y., Zhan, T., He, Y., & Hun, X. (2016). Signal amplification technology based on entropy-driven molecular switch for ultrasensitive electrochemical determination of DNA and Salmonella typhimurium. Sensors and Actuators B: Chemical, 225, 420–427.

    Article  CAS  Google Scholar 

  147. Chen, Y., Song, Y., Wu, F., Liu, W., Fu, B., Feng, B., & Zhou, X. (2015). A DNA logic gate based on strand displacement reaction and rolling circle amplification, responding to multiple low-abundance DNA fragment input signals, and its application in detecting miRNAs. Chemical Communications, 51(32), 6980–6983.

    Article  CAS  Google Scholar 

  148. Qing, Z., He, X., Huang, J., Wang, K., Zou, Z., Qing, T., Mao, Z., Shi, H., & He, D. (2014). Target-catalyzed dynamic assembly-based pyrene excimer switching for enzyme-free nucleic acid amplified detection. Analytical Chemistry, 86(10), 4934–4939.

    Article  CAS  Google Scholar 

  149. Yin, P., Choi, H. M., Calvert, C. R., & Pierce, N. A. (2008). Programming biomolecular self-assembly pathways. Nature, 451(7176), 318–322.

    Article  CAS  Google Scholar 

  150. Jiang, Y., Li, B., Milligan, J. N., Bhadra, S., & Ellington, A. D. (2013). Real-time detection of isothermal amplification reactions with thermostable catalytic hairpin assembly. Journal of the American Chemical Society, 135(20), 7430–7433.

    Article  CAS  Google Scholar 

  151. Chen, X., Briggs, N., McLain, J. R., & Ellington, A. D. (2013). Stacking nonenzymatic circuits for high signal gain. Proceedings of the National Academy of Sciences, 110(14), 5386–5391.

    Article  CAS  Google Scholar 

  152. Li, B., Ellington, A. D., & Chen, X. (2011). Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods. Nucleic Acids Research, 39(16), e110–e110.

    Article  CAS  Google Scholar 

  153. Tay, C. Y., Yuan, L., & Leong, D. T. (2015). Nature-inspired DNA nanosensor for real-time in situ detection of mRNA in living cells. ACS Nano, 9(5), 5609–5617.

    Article  CAS  Google Scholar 

  154. Choi, H. M., Chang, J. Y., Trinh, L. A., Padilla, J. E., Fraser, S. E., & Pierce, N. A. (2010). Programmable in situ amplification for multiplexed imaging of mRNA expression. Nature Biotechnology, 28(11), 1208–1212.

    Article  CAS  Google Scholar 

  155. Choi, H. M., Beck, V. A., & Pierce, N. A. (2014). Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. ACS Nano, 8(5), 4284–4294.

    Article  CAS  Google Scholar 

  156. Huang, J., Wang, H., Yang, X., Quan, K., Yang, Y., Ying, L., Xie, N., Ou, M., & Wang, K. (2016). Fluorescence resonance energy transfer-based hybridization chain reaction for in situ visualization of tumor-related mRNA. Chemical Science, 7(6), 3829–3835.

    Article  CAS  Google Scholar 

  157. Li, J., Tan, S., Kooger, R., Zhang, C., & Zhang, Y. (2014). MicroRNAs as novel biological targets for detection and regulation. Chemical Society Reviews, 43(2), 506–517.

    Article  CAS  Google Scholar 

  158. Silverman, A. P., & Kool, E. T. (2005). Quenched probes for highly specific detection of cellular RNAs. Trends in Biotechnology, 23(5), 225–230.

    Article  CAS  Google Scholar 

  159. Zhao, D., Yang, Y., Qu, N., Chen, M., Ma, Z., Krueger, C. J., Behlke, M. A., & Chen, A. K. (2016). Single-molecule detection and tracking of RNA transcripts in living cells using phosphorothioate-optimized 2′-O-methyl RNA molecular beacons. Biomaterials, 100, 172–183.

    Article  CAS  Google Scholar 

  160. Santangelo, P. J., Alonas, E., Jung, J., Lifland, A. W., & Zurla, C. (2012). Probes for intracellular RNA imaging in live cells. Methods in Enzymology, 505, 383.

    Article  CAS  Google Scholar 

  161. Wu, Z., Liu, G.-Q., Yang, X.-L., & Jiang, J.-H. (2015). Electrostatic nucleic acid nanoassembly enables hybridization chain reaction in living cells for ultrasensitive mRNA imaging. Journal of the American Chemical Society, 137(21), 6829–6836.

    Article  CAS  Google Scholar 

  162. Wu, C., Cansiz, S., Zhang, L., Teng, I.-T., Qiu, L., Li, J., Liu, Y., Zhou, C., Hu, R., & Zhang, T. (2015). A nonenzymatic hairpin DNA cascade reaction provides high signal gain of mRNA imaging inside live cells. Journal of the American Chemical Society, 137(15), 4900–4903.

    Article  CAS  Google Scholar 

  163. Cheglakov, Z., Cronin, T. M., He, C., & Weizmann, Y. (2015). Live cell microRNA imaging using cascade hybridization reaction. Journal of the American Chemical Society, 137(19), 6116–6119.

    Article  CAS  Google Scholar 

  164. Li, L., Feng, J., Liu, H., Li, Q., Tong, L., & Tang, B. (2016). Two-color imaging of microRNA with enzyme-free signal amplification via hybridization chain reactions in living cells. Chemical Science, 7(3), 1940–1945.

    Article  CAS  Google Scholar 

  165. Kolpashchikov, D. M. (2010). Binary probes for nucleic acid analysis. Chemical Reviews, 110(8), 4709–4723.

    Article  CAS  Google Scholar 

  166. Yang, B., Zhang, X.-B., Kang, L.-P., Huang, Z.-M., Shen, G.-L., Yu, R.-Q., & Tan, W. (2014). Intelligent layered nanoflare:“lab-on-a-nanoparticle” for multiple DNA logic gate operations and efficient intracellular delivery. Nanoscale, 6(15), 8990–8996.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of this investigation by the Research Council of Shahid Bahonar University of Kerman (Kerman, Iran).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Ravan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fozooni, T., Ravan, H. & Sasan, H. Signal Amplification Technologies for the Detection of Nucleic Acids: from Cell-Free Analysis to Live-Cell Imaging. Appl Biochem Biotechnol 183, 1224–1253 (2017). https://doi.org/10.1007/s12010-017-2494-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2494-4

Keywords

Navigation