Skip to main content
Log in

Optimization of Inexpensive Agricultural By-Products as Raw Materials for Bacitracin Production in Bacillus licheniformis DW2

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacitracin is a broad-spectrum antibiotic used extensively as a feed additive. In this study, inexpensive agricultural by-products were used as nitrogen sources for bacitracin production. Based on both the orthogonal tests, a combination of 7% soybean meal (SBM) +2% low protein rapeseed cake (LPRC) was optimal for bacitracin production. Compared to the original formula, the titer of bacitracin increased by 20.5% reaching 910.4 U/ml in flasks. The titer of bacitracin and the ratio of bacitracin A increased by 12.4 and 6.8% in a 50-l fermentor. Furthermore, this study also explored the effects of exogenously adding different amino acids on the yield of bacitracin. The addition of Cys and Glu enhanced bacitracin production by 5.7 and 5.0%, respectively. This study provided the inexpensive nutrient inputs into efficient bacitracin production and also the insight to further research enabling better utilization of oil cakes for economic viability of the bioprocess industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Azevedo, E. C., Rios, E. M., Fukushima, K., & Campos-Takaki, G. M. (1993). Bacitracin production by a new strain of Bacillus subtilis extraction, purification, and characterization. Applied Biochemistry and Biotechnology, 42, 1–7.

    Article  CAS  Google Scholar 

  2. Shalak, M. V. I. (1971). Bacitracin-a new preparation in poultry farming. Tr. Beloruses. Set’ShokhozAkad., 90, 42.

    CAS  Google Scholar 

  3. Morris, M. (1994). Primary structural confirmation of components of the bacitracin complex. Biological Mass Spectrometry, 23, 61–70.

    Article  CAS  Google Scholar 

  4. Stone, K. J., & Strominger, J. L. (1971). Mechanism of action of bacitracin: complexation with metal ion and C 55-isoprenyl pyrophosphate. Proceedings of the National Academy of Sciences of the United States of America, 68, 3223–3227.

    Article  CAS  Google Scholar 

  5. Drablos, F., Nicholson, D. G., & Ronning, M. (1999). EXAFS study of zinc coordination in bacitracin A. Biochimica et Biophysica Acta, 1431, 433–442.

    Article  CAS  Google Scholar 

  6. Storm, D. R., & Strominger, J. L. (1973). Complex formation between bacitracin peptides and isoprenyl pyrophosphates. The specificity of lipid-peptide interactions. The Journal of Biological Chemistry, 248, 3940–3945.

    CAS  Google Scholar 

  7. Pollock, T. J., Thorne, L., Yamazaki, M., Mikolajczak, M. J., & Armentrout, R. W. (1994). Mechanism of bacitracin resistance in gram-negative bacteria that synthesize exopolysaccharides. Journal of Bacteriology, 176, 6229–6237.

    Article  CAS  Google Scholar 

  8. Haavik, H. I., & Froyshov, O. (1975). Function of peptide antibiotics in producer organisms. Nature, 254, 79–82.

    Article  CAS  Google Scholar 

  9. Johnson, B. A., Anker, H., & Meleney, F. L. (1945). Bacitracin: a new antibiotic produced by a member of the B. subtilis group. Science, 102, 376–377.

    Article  CAS  Google Scholar 

  10. Rieder, H., Heinrich, G., Breuker, E., Simlot, M. M., & Pfaender, P. (1975). Bacitracin synthetase. Methods in Enzymology, 43, 548–559.

    Article  CAS  Google Scholar 

  11. Konz, D., Klens, A., Schorgendorfer, K., & Marahiel, M. A. (1997). The bacitracin biosynthesis operon of Bacillus licheniformis ATCC 10716: molecular characterization of three multi-modular peptide synthetases. Chemistry & Biology, 4, 927–937.

    Article  CAS  Google Scholar 

  12. Ikram ul, H., Ashraf, H., Iqbal, J., & Qadeer, M. A. (2003). Production of alpha amylase by Bacillus licheniformis using an economical medium. Bioresource Technology, 87, 57–61.

    Article  Google Scholar 

  13. Ramachandran, S., Singh, S. K., Larroche, C., Soccol, C. R., & Pandey, A. (2007). Oil cakes and their biotechnological applications—a review. Bioresource Technology, 98, 2000–2009.

    Article  CAS  Google Scholar 

  14. Ramachandran, S., Patel, A. K., Nampoothiri, K. M., Francis, F., Nagy, V., Szakacs, G., & Pandey, A. (2004). Coconut oil cake—a potential raw material for the production of alpha-amylase. Bioresource Technology, 93, 169–174.

    Article  CAS  Google Scholar 

  15. Panagiotopoulos, I. A., Pasias, S., Bakker, R. R., de Vrije, T., Papayannakos, N., Claassen, P. A., & Koukios, E. G. (2013). Biodiesel and biohydrogen production from cotton-seed cake in a biorefinery concept. Bioresource Technology, 136, 78–86.

    Article  CAS  Google Scholar 

  16. Arumugam, A., Sandhya, M., & Ponnusami, V. (2014). Biohydrogen and polyhydroxyalkanoate co-production by Enterobacter aerogenes and Rhodobacter sphaeroides from Calophyllum inophyllum oil cake. Bioresource Technology, 164, 170–176.

    Article  CAS  Google Scholar 

  17. Sircar, A., Sridhar, P., & Das, P. K. (1998). Optimization of solid state medium for the production of clavulanic acid by Streptomyces clavuligerus. Process Biochemistry, 33, 283–289.

    Article  CAS  Google Scholar 

  18. Arun, D., & Dharmalingam, K. (1999). Streptomyces peucetius converts anthracycline intermediates efficiently in culture media containing oil cake as carbon source. World J Microbiol. Biotechnol., 15, 293–294.

    Article  CAS  Google Scholar 

  19. Farzana, K., Shah, S. N., Butt, F. B., & Awan, S. B. (2005). Biosynthesis of bacitracin in solid-state fermentation by Bacillus licheniformis using defatted oil seed cakes as substrate. Pakistan J Pharm. Sci., 18, 55–57.

    CAS  Google Scholar 

  20. Husek, P. (1991). Amino acid derivatization and analysis in five minutes. FEBS Letters, 280, 354–356.

    Article  CAS  Google Scholar 

  21. Aharonowitz, Y. (1980). Nitrogen metabolite regulation of antibiotic biosynthesis. Annual Review of Microbiology, 34, 209–233.

    Article  CAS  Google Scholar 

  22. Elander, R. P. (2003). Industrial production of beta-lactam antibiotics. Applied Microbiology and Biotechnology, 61, 385–392.

    Article  CAS  Google Scholar 

  23. Farid, M. A., el-Enshasy, H. A., el-Diwany, A. I., & el-Sayed-el, S. A. (2000). Optimization of the cultivation medium for natamycin production by Streptomyces natalensis. Journal of Basic Microbiology, 40, 157–166.

    Article  CAS  Google Scholar 

  24. Woodruff, H. B., & Ruger, M. (1948). Studies on the physiology of a streptomycin-producing strain of Streptomyces grisseus on proline medium. Journal of Bacteriology, 56, 315–321.

    CAS  Google Scholar 

  25. Hu, S. Q., & Liu, T. G. (2000). The study of the nutrition requirement of Bacillus licheniformis. J Hebei Acad Sci, 17, 224–227.

    CAS  Google Scholar 

  26. Supek, V., Gamulin, S., & Delic, V. (1985). Enhancement of bacitracin biosynthesis by branched-chain amino acids in a regulatory mutant of Bacillus licheniformis. Folia Microbiologia (Praha), 30, 342–348.

    Article  CAS  Google Scholar 

  27. Chen, X., Xie, F., Zeng, X., Li, D., Chen, S., Li, J., & Wang, Z. (2013). Supplementations of ornithine and KNO3 enhanced bacitracin production by Bacillus licheniformis LC-11. Annales de Microbiologie, 64, 509–514.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grand No: 2015CFB214), the National Natural Science Foundation of Hubei Province of China (Grand No: 31500074), the Applied Basic Research Program of Wuhan Science and Technology Bureau (Grand No: 2016060101010062), and the Opening Project of Hubei Key Laboratory of Lipid Chemistry and Nutrition.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changjun Wang or Shouwen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zheng, H., Wan, X. et al. Optimization of Inexpensive Agricultural By-Products as Raw Materials for Bacitracin Production in Bacillus licheniformis DW2. Appl Biochem Biotechnol 183, 1146–1157 (2017). https://doi.org/10.1007/s12010-017-2489-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2489-1

Keywords

Navigation