Skip to main content

Advertisement

Log in

The Influence of Different Strategies for the Saccharification of the Banana Plant Pseudostem and the Detoxification of Concentrated Broth on Bioethanol Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pseudostem of the Musa cavendishii banana plant was submitted to chemical pretreatments with acid (H2SO4 2%, 120 °C, 15 min) and with alkali (NaOH 3%, 120 °C, 15 min), saccharified by commercial enzymes Novozymes® (Cellic CTec2 and HTec2). The influences of the pretreatments on the degradation of the lignin, cellulose and hemicellulose, porosity of the surface, particle crystallinity, and yield in reducing sugars after saccharification (Y RS), were established. Different concentrations of biomass (70 and 100 g/L in dry matter (dm)), with different physical differences (dry granulated, crushed wet bagasse, and whole pseudostem), were used. The broth with the highest Y RS among the different strategies tested was evaporated until the concentration of reducing sugars (RS) was to the order of 100 g/L and fermented, with and without prior detoxification with active carbon. Fermentation was carried out in Erlenmeyer flasks, at 30 °C, initial pH 5.0, and 120 rpm. In comparison to the biomass without chemical pretreatment and to the biomass pretreated with NaOH, the acid pretreatment of 70 g/L of dry granulated biomass enabled greater digestion of hemicellulose, lower index of cellulose crystallinity, and higher Y RS (45.8 ± 0.7%). The RS increase in fermentation broth to 100 g/L, with posterior detoxification, presented higher productivity ethanol (Q P = 1.44 ± 0.02 g/L/h) with ethanol yield (Y P/RS) of 0.41 ± 0.02 g/g. The value of Q P was to the order of 75% higher than Q P obtained with the same broth without prior detoxification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Piubeli, F.A., Amaral, D.M. (2003). Atmospheric pollution interfering in the society’s quality of life. X Production Engineering Symposium. 1–10. In Portuguese.

  2. Santos, L. R., & Santos, J. C. (2013). Exploring the environment and population growth: sustainable development as an alternative. Nativa - Journal of Social Sciences of Northern Mato Grosso., 1, 1–7 In Portuguese.

    Google Scholar 

  3. Papari, S., & Hawboldt, K. (2015). A review on the pyrolysis of woody biomass to bio-oil: focus on kinetic models. Renewable and Sustainable Energy Reviews., 52, 1580–1595.

    Article  CAS  Google Scholar 

  4. Sunde, K., Brekke, A., & Solberg, B. (2011). Environmental impacts and costs of woody biomass-to-liquid (BTL) production and use—a review. Forest Policy and Economics., 13, 591–602.

    Article  Google Scholar 

  5. Bharathiraja, B., Chakravarthy, M., Ranjith kumar, R., Yuvaraj, D., Jayamuthunagai, J., Praveen Kumar, R., & Palani, S. (2014). Biodiesel production using chemical and biological methods—a review of process, catalyst, acyl acceptor, source and process variables. Renewable and Sustainable Energy Reviews., 38, 368–382.

    Article  CAS  Google Scholar 

  6. Budzianowski, W. M. (2016). A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment. Renewable and Sustainable Energy Reviews., 54, 1148–1171.

    Article  Google Scholar 

  7. Gupta, A., & Verma, J. P. (2015). Sustainable bio-ethanol production from agro-residues: a review. Renewable and Sustainable Energy Reviews., 41, 550–567.

    Article  CAS  Google Scholar 

  8. Union sugarcane industry, production and use of fuel ethanol in Brazil 2007. Available from: www.unica.com.br. Accessed March 07, 2014. In Portuguese.

  9. Demirbas, A. (2016). Green energy and technology, in Waste Energy for Life Cycle Assessment, 1st ed.: Future energy sources (Chapter 2), Springer International Publishing Switzerland, pp. 33–70.

  10. Soccol, C. R., Brar, S. K., Faulds, C., & Ramos, L. P. (2016). Green energy and technology, in green fuels technology (1st ed.pp. 1–550). Switzerland: Springer International Publishing.

    Book  Google Scholar 

  11. Cortez, L.A.B. (2010). In bioethanol from sugarcane. R&D to production and sustainability, 1st ed. Part 3: New agricultural model for sugarcane (Magalhães, P.S.; Braunbeck, O.A.); Other materials for the production of ethanol (Leal, M.R.L.V.; Valle, T.L.; Feltan, J.C.; Carvalho, C.R.L.), Edgard Blucher; São Paulo, SP, pp. 519–542. In Portuguese.

  12. Irfan, M., Asghar, U., Nadeem, M., Nelofer, R., Syed, Q., Abdullah, H., & Qazi, S. J. I. (2016). Statistical optimization of saccharification of alkali pretreated wheat straw for bioethanol production. Waste and Biomass Valorization, 7, 1–8.

    Article  Google Scholar 

  13. Arenas-Cárdenas, P., López-López, A., Moeller-Chávez, G. E., & León-Becerril, E. (2016). Current pretreatments of lignocellulosic residues in the production of bioethanol. Waste and Biomass Valorization., 7, 1–21.

    Article  Google Scholar 

  14. Union sugarcane industry 2016. Available from: www.unica.com.br. Accessed August 04, 2016. In Portuguese.

  15. Martins, L. H. S., Rabelo, S. C., & Costa, A. C. (2015). Effects of the pretreatment method on high solids enzymatic hydrolysis and ethanol fermentation of the cellulosic fraction of sugarcane bagasse. Bioresource Technology., 191, 312–321.

    Article  CAS  Google Scholar 

  16. Karimi, K. (2015). Biofuel and biorefinery technologies, in lignocellulose-based bioproducts (vol. 1, pp. 1–319). Switzerland: Springer International Publishing.

    Google Scholar 

  17. Toquero, C., & Bolado, S. (2014). Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresource Technology., 157, 68–76.

    Article  CAS  Google Scholar 

  18. Hamelinck, C. N., Hooijdonk, G. V., & Faaij, A. P. C. (2005). Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy., 28, 384–410.

    Article  CAS  Google Scholar 

  19. Taherzadeh, M. J., & Niklasson, C. (2004). Ethanol from lignocellulosic materials: pretreatment, acid and enzymatic hydrolyses, and fermentation. ACS Symposium Series., 889, 49–68.

    CAS  Google Scholar 

  20. Palmqvist, E., & Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresource Technology., 74, 25–33.

    Article  CAS  Google Scholar 

  21. Daorattanachai, P., Namuangruk, S., Viriya-Empikul, N., Laosiripojana, N., & Faungnawakij, K. (2012). 5-Hydroxymethylfurfural production from sugars and cellulose in acid- and base-catalyzed conditions under hot compressed water. Journal of Industrial and Engineering Chemistry., 18, 1893–1901.

    Article  CAS  Google Scholar 

  22. Gu, H., Zhang, J., & Bao, J. (2014). Inhibitor analysis and adaptive evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues. Bioresource Technology., 157, 6–13.

    Article  CAS  Google Scholar 

  23. Mussatto, S. I., & Roberto, I. C. (2004). Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresource Technology., 93, 1–10.

    Article  CAS  Google Scholar 

  24. Larsson, S., Reimann, A., Nilvebrant, N., & Jonsson, L. J. (1999). Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Applied Biochemistry and Biotechnology, 77, 91–103.

    Article  Google Scholar 

  25. Brazilian Institute of Geography and Statistics. Systematic Survey of Agricultural Production. Available from: www.sidra.ibge.gov.br. Accessed December 07, 2015. In Portuguese.

  26. Souza, O., Federizzi, M., Coelho, B., Wagner, T. M., & Wisbeck, E. (2010). Biodegradation of lignocellulosic residues generated in banana farming and its valorization for the production of biogas. Brazilian Journal of Agricultural and Environmental Engineering., 14, 438–443 In Portuguese.

    Google Scholar 

  27. Souza, O., Schulz, M.A., Fischer, G.A.A., Souza, E.L., Sellin, N. (2011). Bioethanol from banana, pulp and peel. II International Symposium on Agricultural Waste Management and Agribusiness. 1–4. In Portuguese.

  28. Souza, O., Silva, M., Schulz, M.A., Souza, E.L., Sellin, N., Marangoni, C. (2013). Bioethanol from fruit peel and banana pseudostem. XIX Symposium National Bioprocesses. 1–4. In Portuguese.

  29. Souza, O., Fischer, G. A. A., Souza, E. L., Sellin, N., & Marangoni, C. (2013). Production of biogas from banana farming waste. III International Symposium on Agricultural Waste Management and Agribusiness. São Pedro - SP, Brazil. 1–5. In Portuguese.

  30. Souza, E. L., Liebl, G. F., Marangonia, C., Sellin, N., Montagnoli, M. S., & Souza, O. (2014). Bioethanol from fresh and dried banana plant pseudostem. Chemical Engineering Transactions., 38, 1–6.

    Google Scholar 

  31. Prado, C. A., Souza, E. L., Souza, O., Sellin, N., & Marangoni, C. (2014). Determination of the temperature of the concentration of the sugars of the hydrolyzed broth from lignocellulosic residues of banana farming. 9th International Congress of Bioenergy. São Paulo - SP, Brazil. 1–7. In Portuguese.

  32. Padoan, M. R., Hopfner, S. A., Souza, E. L., Sellin, N., Marangoni, C., & Souza, O. (2014). Residual biomass ethanol from the banana industry. 9th International Congress of Bioenergy. São Paulo - SP, Brazil. 1–6. In Portuguese.

  33. Schulz, M.A. (2010). Production of bioethanol from banana farming waste: banana pulp and peels. Master thesis, University of the Region of Joinville, Joinville, Brazil. 1–100. In Portuguese.

  34. Gonçalves Filho, L. C., Fischer, G. A. A., Sellin, N., Marangoni, C., & Souza, O. (2013). Hydrolysis of banana tree pseudostem and second-generation ethanol production by Saccharomyces cerevisae. Journal of Environmental Science and Engineering., 2, 65–69.

    Google Scholar 

  35. Van Soest, P. J., & Wine, R. H. (1968). Determination of lignin and cellulose in acid-detergent fiber with permanganate. Journal of the Association of Official Analytical Chemists., 51, 779–786.

    Google Scholar 

  36. Adney, B., & Baker, J. (2008). Measurement of cellulase activities. Laboratory analytical procedure (LAP). Technical Report NREL/TP – 510-42628. National Renewable Energy Laboratory. 1–11.

  37. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanaseactivity. Journal of Biotechnology., 23, 57–270.

    Article  Google Scholar 

  38. Miller, G. L. (1959). Use of Dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry., 31, 426–428.

    Article  CAS  Google Scholar 

  39. Hollmann, J., & Lindhauer, M. G. (2005). Pilot-scale isolation of glucuronoarabinoxylans from wheat bran. Carbohydrate Polymers., 59, 225–230.

    Article  CAS  Google Scholar 

  40. Darvill, J. E., Mcneil, M., Darvill, A. G., & Albersheim, P. (1980). Structure of plant cell walls. XI. Glucuronoarabinoxylan, a second hemicellulose in the primary cell walls of suspension-cultured sycamore cells. Plant Physiology, 66, 1135–1139.

    Article  CAS  Google Scholar 

  41. Ferreira, J. (2013). Production of levan and bioethanol using banana peels by Zymomonas mobilis. Master thesis, São Paulo State University “Julio de Mesquita Filho”, São Paulo, Brazil. 1–94. In Portuguese.

  42. Chaovanalikit, A., & Wrolstad, R. E. (2004). Total anthocyanins and total phenolics of fresh and processed cherries and their antioxidant properties. Food Chemistry and Toxicology., 69, 67–72.

    Google Scholar 

  43. Souza, O., Schulz, M. A., Fischer, G. A. A., Wagner, T. M., & Sellin, N. (2012). Biomass alternative energy: bioethanol from banana peel and pulp. Brazilian Journal of Agricultural and Environmental Engineering., 16, 915–921 In Portuguese.

    Google Scholar 

  44. Jayaprabha, J. S., Brahmakumar, M., & Vattackatt, M. B. (2011). Banana pseudostem characterization and its fiber property evaluation on physical and bioextraction. Journal of Natural Fibers., 8, 1–12.

    Article  Google Scholar 

  45. Gogoi, K., Phukan, M. M., Dutta, N., SIngh, S. P., Sedai, P., Konwar, B. K., & Maji, T. K. (2014). Valorization and miscellaneous prospects of waste Musa balbisiana Colla pseudostem. Journal of Waste Management., 2010, 1–8.

    Article  Google Scholar 

  46. Ingale, S., Joshi, S. J., & Gupte, A. (2014). Production of bioethanol using agricultural waste: banana pseudo stem. Brazilian Journal of Microbiology., 45, 885–892.

    Article  CAS  Google Scholar 

  47. Silva, V.F.N. (2009). Study of the pretreatment and enzymatic saccharification of agroindustrial residues as stages in the process of obtaining cellulosic ethanol. Master thesis, Lorena Engineering School of the University of São Paulo, Lorena, Brazil. 1–106. In Portuguese.

  48. Pereira, A. L. S., Nascimento, D. M., Souza, M. S. M., Cassales, A. R., Morais, J. P. S., Paula, R. C. M., Rosa, M. F., & Feitosa, J. P. A. (2014). Banana (Musa sp. cv. Pacovan) pseudostem fibers are composed of varying lignocellulosic composition throughout the diameter. BioResouurces., 9, 7749–7763.

    CAS  Google Scholar 

  49. Gírio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., & Bogel-Łukasik, R. (2010). Hemicelluloses for fuel ethanol: a review. Bioresource Technology., 101, 4775–4800.

    Article  Google Scholar 

  50. Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86, 1781–1788

  51. Mussatto, S. I., Fernandes, M., Milagres, A. M. F., & Roberto, I. C. (2008). Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from Brewer’s spent grain. Enzyme and Microbial Technology., 43, 124–129.

    Article  CAS  Google Scholar 

  52. Pfeifer, P. A., Bonn, G., & Bobleter, O. (1984). Influence of biomass degradation products on the fermentation of glucose to ethanol by Saccharomyces carlsbergensis W 34. Biotechnology Letters, 6, 541–546.

    Article  CAS  Google Scholar 

  53. Pereira, R.C. (2006). Ensiling and hay of sugarcane bagasse from the production of cachaça. PhD thesis, Federal University of Lavras, Brazil. 1–214. In Portuguese.

  54. Gomes, G. M. F., Vasconcelos, A. M., Egito, A. S., Lima, A. R., Carneiro, J. C., Landim, A. V., Fonteles, N. L. O., & Salles, H. O. (2013). In situ degradability of sugarcane bagasse for small ruminants of naturalized breeds in northeast Brazil. Brazilian Archives of Veterinary Medicine and Zootechnics., 65, 1792–1800 In Portuguese.

    Google Scholar 

  55. Wolf, L.D. (2011). Organosolve pretreatment of sugarcane bagasse for the production of ethanol and obtaining xylooligomers. Master thesis, Federal University of São Carlos, São Carlos, Brazil. 1–147. In Portuguese.

  56. Mooney, C. A., Mansfield, S. D., Touhy, M. G., & Saddle, J. N. (1998). The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods. Bioresource Technology., 64, 113–119.

    Article  CAS  Google Scholar 

  57. Diniz, J. M. B. F., Gil, M. H., & Castro, J. A. A. M. (2004). Hornification—its origin and interpretation in wood pulps. Wood Science and Technology., 37, 489–494.

    Article  Google Scholar 

  58. Fernandes, B. S., Gusso, A., & Fornari Júnior, C. C. M. (2008). Evaluation of the drying of coco fibers at 100 °C, aiming their micronization for use in polymeric composites. Brazilian Journal of Agroindustrial Products., 10, 141–148 In Portuguese.

    Google Scholar 

  59. Saha, B., & Iten, L. B. (2005). Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnology Progress., 21, 816–822.

    Article  CAS  Google Scholar 

  60. Wyk, J. P. H. V. (2001). Biotechnology and the utilization of biowaste as a resource for bioproduct development. TRENDS in Biotechnology., 19, 171–177.

    Google Scholar 

  61. Kotiranta, P., Karlsson, J., Siika-Aho, M., Medve, J., Viikari, L., Tjerneld, F., & Tenkanen, M. (1999). Adsorption and activity of Trichoderma reesei cellobiohydrolase I, endoglucanase II, and the corresponding core proteins on steam pretreated willow. Applied Biochemistry and Biotechnology, 81, 81–90.

    Article  CAS  Google Scholar 

  62. Fengel, D., Wegener, G. (1989). In Wood: chemistry, ultrastructure, reactions, vol. 1: Cellulose (Fengel, D., ed.), Walter de Gruyte, Berlin; NY, pp. 66–105.

  63. Cinelli, B. A. (2012). Production of ethanol from the simultaneous fermentation to the hydrolysis of the granular starch of agroindustrial residue. Master thesis, Federal University of Rio de Janeiro, Rio de Janeiro - Brazil. 1–183. In Portuguese.

  64. Silva, L. (2012). Study of enzymatic hydrolysis in high consistency of lignocellulosic materials. Master thesis, Federal University of Paraná, Curitiba, Brazil. 1–85. In Portuguese.

  65. Santos Neto, Á. J. (2009). Problems with the shape of the peaks in liquid chromatography part 1. Scientia Chromatographica., 1, 69–77 In Portuguese.

    Google Scholar 

  66. Taherzadeh, M.J. (1999). Ethanol from lignocellulose: physiological effects of inhibitors and fermentation strategies. PhD thesis, Department of Chemical Reaction Engineering Chalmers University of Technology, Göteborg, Sweden 1999. 1–66.

  67. Zardo, D. M., Alberti, A., Dantas, A. P. C., Guyot, S., Wosiacki, G., & Nogueira, A. (2008). Effect of processing in the content of phenolic compounds and antioxidant activity on apple fermented. Agricultural Sciences., 29, 829–838 In Portuguese.

    CAS  Google Scholar 

  68. Larsson, S., Cassland, P., & Jönsson, L. J. (2001). Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Applied and Environmental Microbiology., 67, 1163–1170.

    Article  CAS  Google Scholar 

  69. Landaeta, R., Aroca, G., Acevedo, F., Teixeira, J. A., & Mussatto, S. I. (2013). Adaptation of a flocculent Saccharomyces cerevisiae strain to lignocellulosic inhibitors by cell recycle batch fermentation. Applied Energy., 102, 124–130.

    Article  CAS  Google Scholar 

  70. Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology, 66, 10–26.

    Article  CAS  Google Scholar 

  71. Steckelberg, C., Andrietta, M.G.S., Andrietta, S.R. (2009). Isolated yeasts from industrial bioethanol production processes—numerical taxonomy and kinetic characteristics. XVII National Bioprocesses Symposium. 1–6. In Portuguese.

  72. Martín, C., & Jönsson, L. J. (2003). Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enzyme and Microbial Technology., 32, 386–395.

    Article  Google Scholar 

  73. Talebnia, F., Niklasson, C., & Taherzadeh, M. J. (2005). Ethanol production from glucose and dilute-acid hydrolyzates by encapsulated S. cerevisiae. Biotechnology and Bioengineering, 90, 345–353.

    Article  CAS  Google Scholar 

  74. Oliveira, F.M.V. (2010). Evaluation of different pretreatments and alkaline delignification in saccharification of sugarcane straw cellulose. Master thesis, Lorena Engineering School of the University of São Paulo, Lorena, Brazil. 1–101. In Portuguese.

  75. Boonsawang, P., Subkaree, Y., & Srinorakutara, T. (2012). Ethanol production from palm pressed fiber by prehydrolysis prior to simultaneous saccharification and fermentation (SSF). Biomass and Bioenergy., 40, 127–132.

    Article  CAS  Google Scholar 

  76. López-Linares, J. C., Romero, I., Cara, C., Ruiz, E., Moya, M., & Castro, E. (2014). Bioethanol production from rapeseed straw at high solids loading with different process configurations. Fuel, 122, 112–118.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Luiz de Souza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, E.L., Sellin, N., Marangoni, C. et al. The Influence of Different Strategies for the Saccharification of the Banana Plant Pseudostem and the Detoxification of Concentrated Broth on Bioethanol Production. Appl Biochem Biotechnol 183, 943–965 (2017). https://doi.org/10.1007/s12010-017-2475-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2475-7

Keywords

Navigation