Skip to main content
Log in

Microplate-Based Evaluation of the Sugar Yield from Giant Reed, Giant Miscanthus and Switchgrass after Mild Chemical Pre-Treatments and Hydrolysis with Tailored Trichoderma Enzymatic Blends

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Giant reed, miscanthus, and switchgrass are considered prominent lignocellulosic feedstocks to obtain fermentable sugars for biofuel production. The bioconversion into sugars requires a delignifying pre-treatment step followed by hydrolysis with cellulase and other accessory enzymes like xylanase, especially in the case of alkali pre-treatments, which retain the hemicellulose fraction. Blends richer in accessory enzymes than commercial mix can be obtained growing fungi on feedstock-based substrates, thus ten selected Trichoderma isolates, including the hypercellulolytic strain Trichoderma reesei Rut-C30, were grown on giant reed, miscanthus, or switchgrass-based substrates. The produced enzymes were used to saccharify the corresponding feedstocks, compared to a commercial enzymatic mix (6 FPU/g). Feedstocks were acid (H2SO4 0.2–2%, w/v) or alkali (NaOH 0.02–0.2%, w/v) pre-treated. A microplate-based approach was chosen for most of the experimental steps due to the large number of samples. The highest bioconversion was generally obtained with Trichoderma harzianum Or4/99 enzymes (78, 89, and 94% final sugar yields at 48 h for giant reed, miscanthus, and switchgrass, respectively), with significant increases compared to the commercial mix, especially with alkaline pre-treatments. The differences in bioconversion yields were only partially caused by xylanases (maximum R 2 = 0.5), indicating a role for other accessory enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Scordia, D., Testa, G., & Cosentino, S. L. (2014). Perennial grasses as lignocellulosic feedstock for second-generation bioethanol production in Mediterranean environment. Italian Journal of Agronomy, 9(581), 84–93.

    Article  Google Scholar 

  2. Fike, J. H., Parrish, D. J., & Fike, W. B. (2013). In B. P. Singh (Ed.), Biofuel crop sustainability: sustainable cellulosic grass crop production (pp. 109–164). Oxford: John Wiley & Sons.

    Chapter  Google Scholar 

  3. Lewandowski, I., Scurlock, J. M. O., Lindvall, E., & Christou, M. (2003). The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy, 25, 335–361.

    Article  Google Scholar 

  4. Rossa, B., Tuffers, A. V., Naidoo, G., & von Willert, D. J. (1998). Arundo donax L. (Poaceae)—a C3 species with unusually high photosynthetic capacity. Botanica Acta, 111, 216–221.

    Article  CAS  Google Scholar 

  5. Corno, L., Pilu, R., & Adani, F. (2014). Arundo donax L.: a non-food crop for bioenergy and bio-compound production. Biotechnology Advances, 32(8), 1535–1549.

    Article  Google Scholar 

  6. Van Dik, J. S., & Pletschke, B. I. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnology Advances, 30, 1458–1480.

    Article  Google Scholar 

  7. Cianchetta, S., Di Maggio, B., Burzi, P. L., & Galletti, S. (2014). Evaluation of selected white-rot fungal isolates for improving the sugar yield from wheat straw. Applied Biochemistry and Biotechnology, 173(2), 609–623.

    CAS  Google Scholar 

  8. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686.

    Article  CAS  Google Scholar 

  9. Singh, J., Suhag, M., & Dhaka, A. (2015). Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydrate Polymers, 117, 624–631.

    Article  CAS  Google Scholar 

  10. Sun, Y., & Cheng, J. J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  11. Chang, V. S., & Holtzapple, M. T. (2000). Fundamental factors affecting biomass enzymatic reactivity. Applied Biochemistry and Biotechnology, 84, 5–37.

    Article  Google Scholar 

  12. Kootstra, A. M. J., Beeftink, H. H., Scott, E. L., & Sanders, J. P. M. (2009). Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochemical Engineering Journal, 46, 126–131.

    Article  CAS  Google Scholar 

  13. McIntosh, S., & Vancov, T. (2011). Optimisation of dilute alkaline pretreatment for enzymatic saccharification of wheat straw. Biomass and Bioenergy, 35(7), 309–403.

    Article  Google Scholar 

  14. Hu, J., Arantes, V., & Saddler, J. N. (2011). The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnology for Biofuels, 4(1), 1–14.

    Article  CAS  Google Scholar 

  15. Li, J., Zhou, P., Liu, H., Xiong, C., Lin, J., Xiao, W., Gong, Y., & Liu, Z. (2014). Synergism of cellulase, xylanase, and pectinase on hydrolyzing sugarcane bagasse resulting from different pretreatment technologies. Bioresource Technology, 155, 258–265.

    Article  CAS  Google Scholar 

  16. Berlin, A., Maximenko, V., Gilkes, N., & Saddler, J. (2007). Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnology and Bioengineering, 97(2), 287–296.

    Article  CAS  Google Scholar 

  17. Alvira, P., Negro, M. J., & Ballesteros, M. (2011). Effect of endoxylanase and α-L-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresource Technology, 102(6), 4552–4558.

    Article  CAS  Google Scholar 

  18. Banerjee, G., Car, S., Scott-Craig, J. S., Borrusch, M. S., & Walton, J. D. (2010a). Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations. Biotechnology for Biofuels, 3, 22.

    Article  Google Scholar 

  19. Banerjee, G., Scott-Craig, J. S., & Walton, J. D. (2010b). Improving enzymes for biomass conversion: a basic research perspective. Bioenergy Research, 3, 82–92.

    Article  Google Scholar 

  20. Juhász, T., Szengyel, Z., Réczey, K., Siika-Aho, M., & Viikari, L. (2005). Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochemistry, 40, 3519–3325.

    Article  Google Scholar 

  21. Cianchetta, S., Galletti, S., Burzi, P. L., & Cerato, C. (2012). Hydrolytic potential of Trichoderma sp. strains evaluated by microplate-based screening followed by switchgrass saccharification. Enzyme and Microbial Technology, 50, 304–310.

    Article  CAS  Google Scholar 

  22. Jeon, Y. J., Xun, Z., & Rogers, P. L. (2010). Comparative evaluations of cellulosic raw materials for second generation bioethanol production. Letters of Applied Microbiology, 51, 518–524.

    Article  CAS  Google Scholar 

  23. Kim, Y., Mosier, N. S., Ladisch, M. R., Pallapolu, V. R., Lee, Y. Y., Garlock, R., Balan, V., Dale, B. E., Donohoe, B. S., Vinzant, T. B., Elander, R. T., Falls, M., Sierra, R., Holtzapple, M. T., Shi, J., Ebrik, M. A., Redmond, T., Yang, B., Wyman, C. E., & Warner, R. E. (2011). Comparative study on enzymatic digestibility of switchgrass varieties and harvests processed by leading pretreatment technologies. Bioresource Technology, 102(24), 11089–11096.

    Article  CAS  Google Scholar 

  24. Lygin, A. V., Uptonw, J., Dohlemanz, F. G., Juvik, J., Zabotina, O. A., Widholm, J. M., & Lozovaya, V. V. (2011). Composition of cell wall phenolics and polysaccharides of the potential bioenergy crop—Miscanthus. GCB Bioenergy, 3, 333–345.

    Article  CAS  Google Scholar 

  25. Ceotto, E., Castelli, F., Moschella, A., Diozzi, M., & Di Candilo, M. (2015). Cattle slurry fertilization to giant reed (Arundo donax L.): biomass yield and nitrogen use efficiency. Bioenergy Research, 8(3), 1252–1262.

    Article  Google Scholar 

  26. Di Candilo, M., Ceotto, E., & Diozzi, M. (2008). Comparison of 7 ligno-cellulosic biomass feedstock species: 6-years results in the Low Po Valley. Italian Journal of Agronomy, 3(Suppl 3), 481–482.

    Google Scholar 

  27. Monti, A., Bezzi, G., Pritoni, G., & Venturi, G. (2008). Long-term productivity of lowland and upland switchgrass cytotypes as affected by cutting frequency. Bioresource Technology, 99(16), 7425–7432.

    Article  CAS  Google Scholar 

  28. Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral-detergent fiber and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583–3597.

    Article  CAS  Google Scholar 

  29. Hindrichsen, I. K., Wettstein, H. R., Machmüller, A., Knudsen, K. B., Madsen, J., & Kreuzer, M. (2006). Digestive and metabolic utilisation of dairy cows supplemented with concentrates characterised by different carbohydrates. Animal Feed Science and Technology, 126(1), 43–61.

    Article  CAS  Google Scholar 

  30. Cianchetta, S., Galletti, S., Burzi, P. L., & Cerato, C. (2010). A novel microplate-based screening strategy to assess the cellulolytic potential of Trichoderma strains. Biotechnology and Bioengineering, 107, 461–468.

    Article  CAS  Google Scholar 

  31. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  32. Kubicek, C. P., & Penttilä, M. E. (1998). In G. E. Harman & C. P. Kubicek (Eds.), Trichoderma and Gliocladium, enzymes, biological control and commercial applications, vol. 2: regulation of production of plant polysaccharide degrading enzyme by Trichoderma (pp. 49–67). Bristol: Taylor and Francis Ltd..

    Google Scholar 

  33. Zhang, L., Liu, Y., Niu, X., Liu, Y., & Liao, W. (2012). Effects of acid and alkali treated lignocellulosic materials on cellulase/xylanase production by Trichoderma reesei Rut C-30 and corresponding enzymatic hydrolysis. Biomass and Bioenergy, 37, 16–24.

    Article  Google Scholar 

  34. Dien, B. S., Jung, H. J. G., Vogel, K. P., Casler, M. D., Lamb, J. F., Iten, L., Mitchell, R. B., & Sarath, G. (2006). Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass and Bioenergy, 30(10), 880–891.

    Article  CAS  Google Scholar 

  35. Gao, K., Boiano, S., Marzocchella, A., & Rehmann, L. (2014). Cellulosic butanol production from alkali-pretreated switchgrass (Panicum virgatum) and phragmites (Phragmites australis). Bioresource Technology, 174, 176–181.

    Article  CAS  Google Scholar 

  36. Xu, N., Zhang, W., Ren, S., Liu, F., Zhao, C., Liao, H., Xu, Z., Huang, J., Li, Q., Tu, Y., Yu, B., Wang, Y., Jiang, J., Qin, J., & Peng, L. (2012). Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biotechnology for Biofuels, 5(1), 58.

    Article  CAS  Google Scholar 

  37. Bowman, M. J., Dien, B. S., Vermillion, K. E., & Mertens, J. A. (2015). Isolation and characterization of unhydrolyzed oligosaccharides from switchgrass (Panicum virgatum L.) xylan after exhaustive enzymatic treatment with commercial enzyme preparations. Carbohydrate Research, 407, 42–50.

    Article  CAS  Google Scholar 

  38. Zhang, J., Siika-aho, M., Tenkanen, M., & Viikari, L. (2011). The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed. Biotechnology for Biofuels, 4(1), 1–10.

    Article  CAS  Google Scholar 

  39. Hu, J., Chandra, R., Arantes, V., Gourlay, K., van Dyk, J. S., & Saddler, J. N. (2015). The addition of accessory enzymes enhances the hydrolytic performance of cellulase enzymes at high solid loading. Bioresource Technology, 186, 149–153.

    Article  CAS  Google Scholar 

  40. Polizeli, M. L. T. M., Rizzatti, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A., & Amorim, D. S. (2005). Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology, 67(5), 577–591.

    Article  CAS  Google Scholar 

  41. Qing, Q., Yang, B., & Wyman, C. E. (2010). Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresource Technology, 101, 9624–9630.

    Article  CAS  Google Scholar 

  42. Nlewem, K. C., & Thrash, M. E. (2010). Comparison of different pretreatment methods based on residual lignin effect on the enzymatic hydrolysis of switchgrass. Bioresource Technology, 101(14), 5426–5430.

    Article  CAS  Google Scholar 

  43. Jiang, D., Ge, X., Zhang, Q., & Li, Y. (2016). Comparison of liquid hot water and alkaline pretreatments of giant reed for improved enzymatic digestibility and biogas energy production. Bioresource Technology, 216, 60–68.

    Article  CAS  Google Scholar 

  44. Komolwanich, T., Tatijarern, P., Prasertwasu, S., Khumsupan, D., Chaisuwan, T., Luengnaruemitchai, A., & Wongkasemjit, S. (2014). Comparative potentiality of Kans grass (Saccharum spontaneum) and Giant reed (Arundo donax) as lignocellulosic feedstocks for the release of monomeric sugars by microwave/chemical pretreatment. Cellulose, 21(3), 1327–1340.

    Article  CAS  Google Scholar 

  45. Le Ngoc Huyen, T., Rémond, C., Dheilly, R. M., & Chabbert, B. (2010). Effect of harvesting date on the composition and saccharification of Miscanthus × giganteus. Bioresource Technology, 101(21), 8224–8231.

    Article  CAS  Google Scholar 

  46. Scordia, D., Cosentino, S. L., Lee, J. W., & Jeffries, T. W. (2011). Dilute oxalic acid pretreatment for biorefining giant reed (Arundo donax L.) Biomass and Bioenergy, 35(7), 3018–3024.

    Article  CAS  Google Scholar 

  47. Anderson, W. F., Dien, B. S., Brandon, S. K., & Peterson, J. D. (2008). Assessment of bermudagrass and bunch grasses as feedstock for conversion to ethanol. Applied Biochemistry and Biotechnology, 145, 13–21.

    Article  CAS  Google Scholar 

  48. Guragain, Y. N., Ganesh, K. M., Bansal, S., Sathish, R. S., Rao, N., & Vadlani, P. V. (2014). Low-lignin mutant biomass resources: effect of compositional changes on ethanol yield. Industrial Crops and Products, 61, 1–8.

    Article  CAS  Google Scholar 

  49. Berlin, A., Gilkes, N., Kilburn, D., Bura, R., Markov, A., Skomarovsky, A., Okunev, O., Gusakov, A., Maximenko, V., Gregg, D., Sinitsyn, A., & Saddler, J. (2005). Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates—evidence for the role of accessory enzymes. Enzyme and Microbial Technology, 37, 175–184.

    Article  CAS  Google Scholar 

  50. Arantes, V., & Saddler, J. N. (2010). Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnology for Biofuels, 3, 4.

    Article  Google Scholar 

  51. Kabel, M. A., Van der Maarel, M. J., Klip, G., Voragen, A. G., & Schols, H. A. (2006). Standard assays do not predict the efficiency of commercial cellulase preparations towards plant materials. Biotechnology and Bioengineering, 93(1), 56–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was carried out partially in the framework of the “BIOSEGEN Project” funded by the Italian Ministry of Agricultural, Food and Forestry Policies, D.M. 17532/7303/10, and partially in the framework of the “AGROENER” project funded by the same Ministry, D.M. 26329/ 2016. The authors gratefully acknowledge Prof. Andrea Monti (University of Bologna), Dr. Enrico Ceotto, and Dr. Mario Di Candilo (CREA) for providing samples of the feedstocks studied, Dr. Ciro Vasmara (CREA) for determining their fiber composition, and Dr. Pier Luigi Burzi (CREA) for the technical assistance in laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Cianchetta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cianchetta, S., Bregoli, L. & Galletti, S. Microplate-Based Evaluation of the Sugar Yield from Giant Reed, Giant Miscanthus and Switchgrass after Mild Chemical Pre-Treatments and Hydrolysis with Tailored Trichoderma Enzymatic Blends. Appl Biochem Biotechnol 183, 876–892 (2017). https://doi.org/10.1007/s12010-017-2470-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2470-z

Keywords

Navigation