Skip to main content

Advertisement

Log in

Evaluation of Chitosan-Based Films Containing Gelatin, Chondroitin 4-Sulfate and ZnO for Wound Healing

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, chitosan-based films containing gelatin and chondroitin-4-sulfate (C4S) with and without ZnO particles were produced and tested in vitro to investigate their potential wound healing properties. Chitosans were produced from shrimp-head processing waste by alkaline deacetylation of chitin to obtain chitosans differing in molecular weight and degree of deacetylation (80 ± 0.5%). The film-forming solutions (chitosan, C4S and gelatin) and ZnO suspension showed no toxicity towards fibroblasts or keratinocytes. Chitosan was able to agglutinate red blood cells, and film-forming solutions induced no hemolysis. Film components were released into solution when incubated in PBS as demonstrated by protein and sugar determination. These data suggest that a stable, chitosan-based film with low toxicity and an ability to release components would be able to establish a biocompatible microenvironment for cell growth. Chitosan-based films significantly increased the percentage of wound healing (wound contraction from 65 to 86%) in skin with full-thickness excision when compared with control (51%), after 6 days. Moreover, histological analysis showed increased granulation tissue in chitosan and chitosan/gelatin/C4S/ZnO films. Chitosan-based biopolymer composites could be used for improved biomedical applications such as wound dressings, giving them enhanced properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cahú, T. B., Santos, S. D., Mendes, A., Córdula, C. R., Chavante, S. F., Carvalho Jr., L. B., Nader, H. B., & Bezerra, R. S. (2012). Recovery of protein, chitin, carotenoids and glycosaminoglycans from Pacific white shrimp (Litopenaeus vannamei) processing waste. Process Biochemistry, 47, 570–577.

    Article  Google Scholar 

  2. Philibert, T., Lee, B. H., & Fabien, N. (2016). Current status and new perspectives on chitin and chitosan as functional biopolymers. Applied Biochemistry and Biotechnology, 1–24.

  3. Weska, R. F., Moura, J. M., Batista, L. M., Rizzi, J., & Pinto, L. A. A. (2007). Optimization of deacetylation in the production of chitosan from shrimp wastes: use of response surface methodology. Journal of Food Engineering, 80, 749–753.

    Article  CAS  Google Scholar 

  4. Croisier, F., & Jérôme, C. (2013). Chitosan-based biomaterials for tissue engineering. European Polymer Journal, 49, 780–792.

    Article  CAS  Google Scholar 

  5. Šimkovic, I. (2008). What could be greener than composites made from polysaccharides? Carbohydr Polymer, 74, 759–762.

    Article  Google Scholar 

  6. Jayakumar, R., Prabaharan, M., Kumar, P. S., Nair, S. V., & Tamura, H. (2011). Novel chitin and chitosan nanofibers in biomedical applications. Biotechnology Advances, 29, 322–337.

    Article  CAS  Google Scholar 

  7. TVL, H.-B., Vidyavathi, M., Kavitha, K., Sastry, T. P., & Suresh-Kumar, R. V. (2010). Preparation and evaluation of chitosan gelatin composite films for wound healing activity. Biomaterials and Artificial Organs, 24, 123–130.

    Google Scholar 

  8. Ramasamy, P., & Shanmugam, A. (2015). Characterization and wound healing property of collagen–chitosan film from Sepia kobiensis (Hoyle, 1885). Int. J. Biol. Macromolec., 74, 93–102.

    Article  CAS  Google Scholar 

  9. Lansdown, A. B., Mirastschijski, U., Stubbs, N., Scanlon, E., & Ågren, M. S. (2007). Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound Repair and Regeneration, 15, 2–16.

    Article  Google Scholar 

  10. Jhong, J. F., Venault, A., Liu, L., Zheng, J., Chen, S. H., Higuchi, A., Huang, J., & Chang, Y. (2014). Introducing mixed-charge copolymers as wound dressing biomaterials. ACS Applied Materials & Interfaces, 6, 9858–9870.

    Article  CAS  Google Scholar 

  11. Campo, G. M., Avenoso, A., Campo, S., Ferlazzo, A. M., & Calatroni, A. (2006). Chondroitin sulphate: antioxidant properties and beneficial effects. Mini Reviews in Medicinal Chemistry, 6, 1311–1320.

    Article  CAS  Google Scholar 

  12. Smith, M. M., & Melrose, J. (2015). Proteoglycans in normal and healing skin. Adv Wound Care, 1, 152–173.

    Article  Google Scholar 

  13. Yamada, S., & Sugahara, K. (2008). Potential therapeutic application of chondroitin sulfate/dermatan sulfate. Current Drug Discovery Technologies, 5, 289–301.

    Article  CAS  Google Scholar 

  14. Sezer, A.D. and Cevher, E. (2011) Biopolymers as wound healing materials: challenges and new strategies. In: Biomaterials applications for nanomedicine, (Pignatello R) InTech pp 384–414.

  15. Roncal, T., Oviedo, A., Armentia, I. L., Fernandez, L., & Villaran, M. C. (2007). High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan. Carbohydrate Research, 342, 2750–2756.

    Article  CAS  Google Scholar 

  16. Brugnerotto, J., Lizardi, J., Goycoolea, F. M., Argüelles-Monal, W., Desbrieres, J., & Rinaudo, M. (2001). An infrared investigation in relation with chitin and chitosan characterization. Polymer, 42, 3569–3580.

    Article  CAS  Google Scholar 

  17. Patra, M. K., Manoth, M., Singh, V. K., Gowd, G. S., Choudhry, V. S., Vadera, S. R., & Kumar, N. (2009). Synthesis of stable dispersion of ZnO quantum dots in aqueous medium showing visible emission from bluish green to yellow. Journal of Luminescence, 129, 320–324.

    Article  CAS  Google Scholar 

  18. Gaidamashvili, M., & van Staden, J. (2002). Interaction of lectin-like proteins of South African medicinal plants with Staphylococcus aureus and Bacillus subtilis. Journal of Ethnopharmacology, 80, 131–135.

    Article  CAS  Google Scholar 

  19. RMPB, C., AFM, V., MLV, O., LCBB, C., MTS, C., & Carneiro-da-Cunha, M. G. (2011). A mew mistletoe Phthirusa pyrifolia leaf lectin with antimicrobial properties. Process Biochemistry, 45, 526–533.

    Google Scholar 

  20. Paula, A. M., DST, M., Araújo Jr., R. T., Souza Filho, A. G., & Alves, O. L. (2012). Suppression of the hemolytic effect of mesoporous silica nanoparticles after protein corona interaction: independence of the surface microchemical environment. Journal of the Brazilian Chemical Society, 23, 1807–1814.

    Article  CAS  Google Scholar 

  21. Bradford, M. M. (1976). Rapid and sensitive method for quantification of microgram quantities of protein utilizing principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  22. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1958). Colorimetric method for determination of sugars and related substances. Anal Chem, 28, 360–356.

    Google Scholar 

  23. Dai, T., Tanaka, M., Huang, Y. Y., & Hamblin, M. R. (2011). Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Review of Anti-Infective Therapy, 9, 857–879.

    Article  CAS  Google Scholar 

  24. Tanaka, A., Nagate, T., & Matsuda, H. (2005). Acceleration of wound healing by gelatin film dressings with epidermal growth factor. The Journal of Veterinary Medical Science, 67, 909–913.

    Article  CAS  Google Scholar 

  25. Chong, E. J., Phan, T. T., Lim, I. J., Zhang, Y. Z., Bay, B. H., Ramakrishna, S., & Lim, C. T. (2007). Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomaterialia, 3, 321–330.

    Article  CAS  Google Scholar 

  26. Gilbert, M. E., Kirker, K. R., Gray, S. D., Ward, P. D., Szakacs, J. G., Prestwich, G. D., & Orlandi, R. R. (2014). Chondroitin sulfate hydrogel and wound healing in rabbit maxillary sinus mucosa. Laryngoscope, 114, 1406–1409.

    Article  Google Scholar 

  27. Sezer, A. D., Hatipoglu, F., Cevher, E., Oğurtan, Z., Bas, A. L., & Akbuğa, J. (2007). Chitosan film containing fucoidan as a wound dressing for dermal burn healing: preparation and in vitro/in vivo evaluation. AAPS PharmSciTech, 8, 94–101.

    Article  Google Scholar 

  28. Selvam, S., & Sundrarajan, M. (2012). Functionalization of cotton fabric with PVP/ZnO nanoparticles for improved reactive dye ability and antibacterial activity. Carbohyd. Polym., 87, 1419–1424.

    Article  CAS  Google Scholar 

  29. Kim, M. S., Park, S. J., Gu, B. K., & Kim, C. H. (2015). Fabrication of chitosan nanofibers scaffolds with small amount gelatin for enhanced cell viability. In Applied Mechanics and Materials, 749, 220–224 Trans Tech Publications.

    Article  Google Scholar 

  30. Hajji, S., Younes, I., Rinaudo, M., Jellouli, K., & Nasri, M. (2015). Characterization and in vitro evaluation of cytotoxicity, antimicrobial and antioxidant activities of chitosans extracted from three different marine sources. Applied Biochemistry and Biotechnology, 177, 18–35.

    Article  CAS  Google Scholar 

  31. Roche, E. D., Renick, P. J., Tetens, S. P., & Carson, D. L. (2012). A model for evaluating topical antimicrobial efficacy against methicillin-resistant Staphylococcus aureus biofilms in superficial murine wounds. Antimicrobl Agents Chemother, 56, 4508–4510.

    Article  CAS  Google Scholar 

  32. Ridolfi, D. M., Marcato, P. D., Machado, D., Silva, R. A., Justo, G. Z., & Durán, N. (2011). In vitro cytotoxicity assays of solid lipid nanoparticles in epithelial and dermal cells. Journal of Physics Conference Series, 304, 012032.

    Article  Google Scholar 

  33. Subhasree, R. S., Selvakumar, D., & Kumar, N. S. (2012). Hydrothermal mediated synthesis of ZnO nanorods and their antibacterial properties. Lett. Appl. Nano. Bio. Sci., 1, 2–7.

    Google Scholar 

  34. Vasile, B. S., Oprea, O., Voicu, G., Ficai, A., Andronescu, E., Teodorescu, A., & Holban, A. (2014). Synthesis and characterization of a novel controlled release zinc oxide/gentamicin–chitosan composite with potential applications in wounds care. International Journal of Pharmaceutics, 463, 161–169.

    Article  CAS  Google Scholar 

  35. Souza, A. P., Gerlach, R. F., & SRP, L. (2000). Inhibition of human gingival gelatinases (MMP-2 and MMP-9) by metal salts. Dental Materials, 16, 103–108.

    Article  Google Scholar 

  36. Souza, A. P., Gerlach, R. F., & SRP, L. (2001). Inhibition of human gelatinases by metals released from dental amalgam. Biomaterials, 22, 2025–2030.

    Article  CAS  Google Scholar 

  37. Sudesh Kumar, P. T., Lakshmanan, V. K., Anilkumar, T. V., Ramya, C., Reshmi, P., Unnikrishnan, A. G., Nair, S. V., & Jayakumar, R. (2012). Flexible and microporous chitosan hydrogel/nanoZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS Applied Materials & Interfaces, 4, 2618–2629.

    Article  Google Scholar 

  38. Wang, X., Du, Y., & Liu, H. (2004). Preparation, characterization and antimicrobial activity of chitosan–Zn complex. Carbohyd Polym., 56, 21–26.

    Article  CAS  Google Scholar 

  39. Selvam, S., Rajiv-Gandhi, R., Suresh, J., Gowri, S., Ravikumar, S., & Sundrarajan, M. (2012). Antibacterial effect of novel synthesized sulfated cyclodextrin crosslinked cotton fabric and its improved antibacterial activities with ZnO, TiO2 and Ag nanoparticles coating. International Journal of Pharmaceutics, 434, 366–374.

    Article  CAS  Google Scholar 

  40. Sudesh Kumar, P. T., Lakshmanan, V. K., Raj, M., Biswas, R., Hiroshi, T., Nair, S. V., & Jayakumar, R. (2013). Evaluation of wound healing potential of β-chitin hydrogel/nano zinc oxide composite bandage. Pharmaceutical Research, 30, 523–537.

    Article  Google Scholar 

  41. Rao, S. B., & Sharma, C. P. (1997). Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. Journal of Biomedical Materials Research, 34, 21–28.

    Article  CAS  Google Scholar 

  42. Paul, W., & Sharma, C. P. (2004). Chitosan and alginate wound dressings: a short review. Biomaterials and Artificial Organs, 18, 18–23.

    Google Scholar 

  43. Kong, M., Chen, X. G., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: a state of the art review. Inter. J. Food Microbiol., 44, 51–63.

    Article  Google Scholar 

  44. Yang, T. C., Chou, C. C., & Li, C. F. (2005). Antibacterial activity of N-alkylated disaccharide chitosan derivatives. Inter. J. Food Microbiol., 97, 237–245.

    Article  CAS  Google Scholar 

  45. Tompkins, G. G. and Burke, J. F. (1996). Alternative wound coverings. In: Total burn care (Herndon DN.) W.B. Saunders, PH, pp 164–172.

  46. Pruitt, B. A., & Levine, N. S. (1984). Characteristics and uses of biological dressings and skin substitutes. Archives of Surgery, 119, 312–322.

    Article  Google Scholar 

  47. Jones, I., Currie, L., & Martin, R. (2002). A guide to biological skin substitutes. Br. J. Plast. Sur., 55, 185–193.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the financing agencies CAPES and CNPq for funding this project; to “Financiadora de Estudos e Projetos”—FINEP, of the Brazilian government, responsible for funding “RECARCINA” (Project No. 01.13.0220.00); and to “Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco” FACEPE for granting the doctoral scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago B. Cahú.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cahú, T.B., Silva, R.A., Silva, R.P.F. et al. Evaluation of Chitosan-Based Films Containing Gelatin, Chondroitin 4-Sulfate and ZnO for Wound Healing. Appl Biochem Biotechnol 183, 765–777 (2017). https://doi.org/10.1007/s12010-017-2462-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2462-z

Keywords

Navigation