Skip to main content

Advertisement

Log in

Effects of Feedstock Sources on Inoculant Acclimatization: Start-up Strategies and Reactor Performance

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Different inoculum sources and acclimatization methods result in different substrate adaptation and biodegradability. To increase straw degradation rate, shorten the digester start-up time, and enhance the biogas production, we domesticated anaerobic sludge by adding microcrystalline cellulose (MCC). During acclimatization, the start-up strategies and reactor performance were investigated to analyze changes in feedstock adaption, biodegradability, and methanogen activity. The effect of the domesticated inoculum was evaluated by testing batch un-pretreated corn stover with a dewatered sludge (DS)-domesticated inoculum as a control. The results showed that (1) using MCC as a substrate rapidly improved microorganism biodegradability and adaptation. (2) MCC as domesticated substrate has relatively stable system and high mass conversion, but with low buffer capacity. (3) Macro- and micronutrients should be added for improving the activity of methanogenic and system’s buffer capacity. (4) Using the domesticated inoculums and batch tests to anaerobically digest untreated corn stover yielded rapid biogas production of 292 mL, with an early peak value on the first day. The results indicated that cultivating directional inoculum can efficiently and quickly start-up digester. These investigated results to promote anaerobic digestion of straw for producing biogas speed up the transformation of achievements of biomass solid waste utilization have a positive promoting significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Anaerobic digestion

CS:

Corn stover

semi-CSTR:

Semi-continuous stirred-tank reactor

C/N ratio:

Carbon/nitrogen ratio

DS:

Dewatered sludge

HRT:

Hydraulic retention time

MCC:

Microcrystalline cellulose

NH4 +-N:

Ammonia nitrogen

OLR:

Organic loading rate

SCOD:

Soluble chemical oxygen demand

TA:

Total alkalinity

TS:

Total solid

VFAs:

Total volatile fatty acids

VS:

Volatile solid

References

  1. Li, K., Liu, R. H., & Sun, C. (2016). A review of methane production from agricultural residues in China. Renewable and Sustainable Energy Reviews, 54, 857–865.

    Article  CAS  Google Scholar 

  2. Yang, Q., Ju, M. T., & Li, W. Z. (2016). Review of methane production from straws anaerobic digestion. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 32, 232–242.

    Google Scholar 

  3. Pang, Y. Z., Liu, Y. P., Li, X. J., Wang, K. S., & Yuan, H. R. (2008). Improving biodegradability and biogas production of corn stover through sodium hydroxide solid state pretreatment. Energy & Fuels, 22, 2761–2766.

    Article  CAS  Google Scholar 

  4. Sawatdeenarunat, C., Surendra, K. C., Takara, D., Oechsner, H., & Khanal, S. K. (2015). Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresource Technology, 178, 78–186.

    Article  Google Scholar 

  5. Golkowska, K., & Greger, M. (2013). Anaerobic digestion of maize and cellulose under thermophilic and mesophilic conditions—a comparative study. Biomass & Bioenergy, 56, 545–554.

    Article  CAS  Google Scholar 

  6. Gu, Y., Chen, X. H., Liu, Z. G., Zhou, X. F., & Zhang, Y. L. (2014). Effect of inoculum sources on the anaerobic digestion of rice straw. Bioresource Technology, 158, 149–155.

    Article  CAS  Google Scholar 

  7. Lay, J. J. (2001). Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnology and Bioengineering, 74, 280–287.

    Article  CAS  Google Scholar 

  8. Chandra, R., Takeuchi, H., & Hasegawa, T. (2012). Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews, 16, 1462–1476.

    Article  CAS  Google Scholar 

  9. Li, Y. Q., Feng, L., Zhang, R. H., He, Y. F., Liu, X. Y., Xiao, X., Ma, X. X., Chen, C., & Liu, G. Q. (2013a). Influence of inoculum source and pre-incubation on bio-methane potential of chicken manure and corn stover. Applied Biochemistry and Biotechnology, 171, 117–127.

    Article  CAS  Google Scholar 

  10. Thouand, G., Friant, P., Bois, F., Cartier, A., Maul, A., & Block, J. C. (1995). Bacterial inoculum density and probability of para-nitrophenol biodegradability test response. Ecotoxicology and Environmental Safety, 30, 274–282.

    Article  CAS  Google Scholar 

  11. Quintero, M., Castro, L., Ortiz, C., Guzman, C., & Escalante, H. (2012). Enhancement of starting up anaerobic digestion of lignocellulosic substrate: fique’s bagasse as an example. Bioresource Technology, 108, 8–13.

    Article  CAS  Google Scholar 

  12. Prochazka, J., Mrazek, J., Strosova, L., Fliegerova, K., Zabranska, J., & Dohanyos, M. (2012). Enhanced biogas yield from energy crops with rumen anaerobic fungi. Engineering in Life Sciences, 12, 343–351.

    Article  CAS  Google Scholar 

  13. Li, J. J., Zicari, S. M., Cui, Z. J., & Zhang, R. H. (2014). Processing anaerobic sludge for extended storage as anaerobic digester inoculum. Bioresource Technology, 166, 201–210.

    Article  CAS  Google Scholar 

  14. Ward, A. J., Hobbs, P. J., Holliman, P. J., & Jones, D. L. (2008). Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology, 99, 7928–7940.

    Article  CAS  Google Scholar 

  15. Bi, S. J., Hong, X. J., Wang, G. X., Li, Y., Gao, Y. M., Yan, L., Wang, Y. J., & Wang, W. D. Effect of domestication on microorganism diversity and anaerobic digestion of food waste. Genetics and Molecular Research, 15(3), gmr.15038417.

  16. Gerardi, M. H., 2003. The Microbiology of Anaerobic Digesters. 1st (ed.). Wiley Interscience.

  17. Chae, K. J., Jang, A., Yim, S. K., & Kim, I. S. (2008). The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresource Technology, 99, 1–6.

    Article  CAS  Google Scholar 

  18. Liu, C., Li, H., Zhang, Y., & Chen, Q. (2016a). Characterization of methanogenic activity during high-solids anaerobic digestion of sewage sludge. Biochemical Engineering Journal, 109, 96–100.

    Article  CAS  Google Scholar 

  19. APHA. (2005). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  20. Rao, P. V., & Baral, S. S. (2011). Experimental design of mixture for the anaerobic co-digestion of sewage sludge. Chemical Engineering Journal, 172, 977–986.

    Article  CAS  Google Scholar 

  21. Zhao, H. Y., Li, J., Li, J. J., Yuan, X. F., Piao, R. Z., Zhu, W. B., Li, H. L., Wang, X. F., & Cui, Z. J. (2013). Organic loading rate shock impact on operation and microbial communities in different anaerobic fixed-bed reactors. Bioresource Technology, 140, 211–219.

    Article  CAS  Google Scholar 

  22. Michaud, S., Bernet, N., Buffière, P., Roustan, M., & Moletta, R. (2002). Methane yield as a monitoring parameter for the start-up of anaerobic fixed film reactors. Water Research, 36, 1385–1391.

    Article  CAS  Google Scholar 

  23. Ennouri, H., Miladi, B., Diaz, S. Z., Güelfo, L. A. F., Solera, R., Hamdi, M., & Bouallagui, H. (2016). Effect of thermal pretreatment on the biogas production and microbial communities balance during anaerobic digestion of urban and industrial waste activated sludge. Bioresource Technology, 214, 184–191.

    Article  CAS  Google Scholar 

  24. Serrano, A., Siles, J. A., Martín, M. A., Chica, A. F., Estevez-Pastor, F. S., & Toro-Baptista, E. (2016). Improvement of anaerobic digestion of sewage sludge through microwave pre-treatment. Journal of Environmental Management, 177, 231–239.

    Article  CAS  Google Scholar 

  25. Liu, J. B., Yu, D. W., Zhang, J., Yang, M., Wang, Y. W., Wei, Y. S., & Tong, J. (2016b). Rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment. Water Research, 98, 98–108.

    Article  CAS  Google Scholar 

  26. Suárez, A. G., Nielsen, K., Köhler, S., Merencio, D. O., & Reyes, I. P. (2014). Enhancement of anaerobic digestion of microcrystalline cellulose (MCC) using natural micronutrient sources. Brazilian J. Chem. Eng., 31, 393–401.

    Article  Google Scholar 

  27. Kumi, P. J., Henley, A., Shana, A., Wilson, V., & Esteves, S. R. (2016). Volatile fatty acids platform from thermally hydrolysed secondary sewage sludge enhanced through recovered micronutrients from digested sludge. Water Research, 100, 267–276.

    Article  CAS  Google Scholar 

  28. Yan, Z. Y., Song, Z. L., Li, D., Yuan, Y. X., Liu, X. F., & Zheng, T. (2015). The effects of initial substrate concentration, C/N ratio, and temperature on solid-state anaerobic digestion from composting rice straw. Bioresource Technology, 177, 266–273.

    Article  CAS  Google Scholar 

  29. Pobeheim, H., Munk, B., Lindorfer, H., & Guebitz, G. M. (2011). Impact of nickel and cobalt on biogas production and process stability during semi-continuous anaerobic fermentation of a model substrate for maize silage. Water Research, 45, 781–787.

    Article  CAS  Google Scholar 

  30. Demirel, B., & Scherer, P. (2011). Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass & Bioenergy, 35, 992–998.

    Article  CAS  Google Scholar 

  31. Zhang, T., Mao, C. L., Zhai, N. N., Wang, X. J., & Yang, G. H. (2015). Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk. Waste Management, 35, 119–126.

    Article  Google Scholar 

  32. Li, Y. Q., Zhang, R. H., Liu, G. Q., Chen, C., He, Y. F., & Liu, X. Y. (2013b). Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresource Technology, 149, 565–569.

    Article  CAS  Google Scholar 

  33. Switzenbaum, M. S., Giraldo-Gomez, E., & Hickey, R. F. (1990). Monitoring of the anaerobic methane fermentation process. Enzyme and Microbial Technology, 12, 722–730.

    Article  CAS  Google Scholar 

  34. Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99, 4044–4064.

    Article  CAS  Google Scholar 

  35. Meng, Y., Li, S., Yuan, H., Zou, D., Liu, Y., Zhu, B., Chufo, A., Jaffar, M., & Li, X. (2015). Evaluating biomethane production from anaerobic digestion mono- and co-digestion of food waste and floatable oil (FO) skimmed from food waste. Bioresource Technology, 185, 7–13.

    Article  CAS  Google Scholar 

  36. Fu, S. F., Shi, X. S., Xu, X. H., Wang, C. S., Wang, L., Dai, M., & Guo, R. B. (2015). Secondary thermophilic microaerobic treatment in the anaerobic digestion of corn straw. Bioresource Technology, 186, 321–324.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the International Joint Research Projects in the Science & Technology Pillar Program of Tianjin, China (13RCGFSF14300), the Research Projects in the Science & Technology Pillar Program of Tianjin, China (14TXGCCX00012), the Research Projects in the Science & Technology Program of Jinnan District Tianjin, China (2015JNKW0005), the Research Projects in the Science & Technology Pillar Program of Tianjin, China (15JCTPJC63300), and the Ph.D. Candidate Research Innovation Fund of Nankai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Ting Ju.

Electronic Supplementary Material

ESM 1

(DOCX 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Wei, LH., Li, WZ. et al. Effects of Feedstock Sources on Inoculant Acclimatization: Start-up Strategies and Reactor Performance. Appl Biochem Biotechnol 183, 729–743 (2017). https://doi.org/10.1007/s12010-017-2460-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2460-1

Keywords

Navigation