Skip to main content

Advertisement

Log in

Co-Fermentation of Cheese Whey and Crude Glycerol in EGSB Reactor as a Strategy to Enhance Continuous Hydrogen and Propionic Acid Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study evaluated the production of hydrogen and propionic acid in an expanded granular sludge bed (EGSB) reactor by co-fermentation of cheese whey (CW) and crude glycerol (CG). The reactor was operated at hydraulic retention time (HRT) of 8 h by changing the CW/CG ratio from 5:1 to 5:2, 5:3, 5:4, and 5:5. At the ratio of 5:5, HRT was reduced from 8 to 0.5 h. The maximum hydrogen yield of 0.120 mmol H2 g COD−1 was observed at the CW/CG ratio of 5:1. Increasing the CG concentration repressed hydrogen production in favor of propionic acid, with a maximum yield of 6.19 mmol HPr g COD−1 at the CW/CG ratio of 5:3. Moreover, by reducing HRT of 8 to 0.5 h, the hydrogen production rate was increased to a maximum value of 42.5 mL H2 h−1 L−1at HRT of 0.5 h. The major metabolites were propionate, 1,3-propanediol, acetate, butyrate, and lactate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Das, D. (2009). Advances in biohydrogen production processes: an approach towards commercialization. International Journal of Hydrogen Energy, 34, 7349–7357.

    Article  CAS  Google Scholar 

  2. Show, K. Y., Lee, D. J., Tay, J. H., Lin, C. Y., & Chang, J. S. (2012). Biohydrogen production: current perspectives and the way forward. International Journal of Hydrogen Energy, 37, 15616–15631.

    Article  CAS  Google Scholar 

  3. Temudo, M. F., Poldermans, R., Kleerebezem, R., & van Loosdrecht, M. C. M. (2008). Glycerol fermentation by (open) mixed cultures: a chemostat study. Biotechnology and Bioengeneering, 100, 1088–1098.

    Article  CAS  Google Scholar 

  4. ANP – Agencia Nacional do Petróleo, Gás Natural e Biocombustíveis (National Agency of Oil, Natural Gas, and Biofuels –Brazil). (2016). Brazilian Statistical Yearbook of Oil, Natural Gas and Biofuels. Rio de Janeiro: National Agency of Oil, Natural Gas and Biofuels (in Portuguese).

    Google Scholar 

  5. Sarma, S. J., Brar, S. K., Sydney, E. B., Bihan, Y. L., Buelna, G., & Soccol, C. R. (2012). Microbial hydrogen production by bioconversion of crude glycerol: a review. International Journal of Hydrogen Energy, 37, 6473–6490.

    Article  CAS  Google Scholar 

  6. Rivero, M., Solera, R., & Perez, M. (2014). Anaerobic mesophilic co-digestion of sewage sludge with glycerol: enhanced biohydrogen production. International Journal of Hydrogen Energy, 39, 2481–2488.

    Article  CAS  Google Scholar 

  7. Liu, B., Christiansen, K., Parnas, R., Xu, Z., & Li, B. (2013). Optimizing the production of hydrogen and 1,3-propanediol in anaerobic fermentation of biodiesel glycerol. International Journal of Hydrogen Energy, 38, 3196–3205.

    Article  CAS  Google Scholar 

  8. Wang, Z., & Yang, S. T. (2013). Propionic acid production in glycerol/glucose co-fermentation by Propionibacterium freudenreichii subsp. shermanii. Bioresource Technolgy, 137, 116–123.

    Article  CAS  Google Scholar 

  9. De Gioannis, G., Muntoni, A., Polettini, A., & Pomi, R. (2013). A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Management, 33, 1345–1361.

    Article  CAS  Google Scholar 

  10. Marone, A., Varrone, C., Fiocchetti, F., Giussani, B., Izzo, G., Mentuccia, L., Rosa, S., & Signorini, A. (2015). Optimization of substrate composition for biohydrogen production from buffalo slurry co-fermented with cheese whey and crude glycerol, using microbial mixed culture. International Journal of Hydrogen Energy, 40, 209–218.

    Article  CAS  Google Scholar 

  11. Davila-Vazquez, G., Cota-Navarro, C. B., Rosales-Colunga, L. M., de León-Rodríguez, A., & Razo-Flores, E. (2009). Continuous biohydrogen production using cheese whey: improving the hydrogen production rate. International Journal of Hydrogen Energy, 34, 4296–4304.

    Article  CAS  Google Scholar 

  12. Prazeres, A. R., Carvalho, F., & Rivas, J. (2012). Cheese whey management: a review. Journal of Environmental Management, 110, 48–68.

    Article  CAS  Google Scholar 

  13. Kargi, F., Eren, N. S., & Ozmihci, S. (2012). Hydrogen gas production from cheese whey powder (CWP) solution by thermophilic dark fermentation. International Journal of Hydrogen Energy, 37, 2260–2266.

    Article  CAS  Google Scholar 

  14. Tapia-Venegas, E., Cabrol, L., Brandhoff, B., Hamelin, J., Trably, E., Steyer, J. P., & Ruiz-Filippi, G. (2015). Adaptation of acidogenic sludge to increasing glycerol concentrations for biohydrogen production. Applied Microbiology and Biotechnology, 99, 8295–8308.

    Article  CAS  Google Scholar 

  15. Perna, V., Castelló, E., Wenzel, J., Zampol, C., Fontes Lima, D. M., Borzacconi, L., Varesche, M. B., Zaiat, M., & Etchebehere, C. (2013). Hydrogen production in an upflow anaerobic packed bed reactor used to treat cheese whey. International Journal of Hydrogen Energy, 38, 54–62.

    Article  CAS  Google Scholar 

  16. Rosa, P. R. F., Santos, S. C., Sakamoto, I. K., Varesche, M. B. A., & Silva, E. L. (2014a). Hydrogen production from cheese whey with ethanol-type fermentation: effect of hydraulic retention time on the microbial community composition. Bioresource Technolgy, 161, 10–19.

    Article  CAS  Google Scholar 

  17. Liu, J., Zhong, J., Wang, Y., Liu, Q., Qian, G., Zhong, L., Guo, R., Zhang, P., & Xu, Z. P. (2010). Effective bio-treatment of fresh leachate from pretreated municipal solid waste in an expanded granular sludge bed bioreactor. Bioresource Technolgy, 101, 1447–1452.

    Article  CAS  Google Scholar 

  18. Kim, D. H., Han, S. K., Kim, S. H., & Shin, H. (2006). Effect of gas sparging on continuous fermentative hydrogen production. International Journal of Hydrogen Energy, 31, 58–69.

    Google Scholar 

  19. Maintinguer, S. I., Fernandes, B. S., Duarte, I. C., Saavedra, N. K., Adorno, M. T., & Varesche, M. B. (2008). Fermentative hydrogen production by microbial consortium. International Journal of Hydrogen Energy, 33, 4309–4317.

    Article  CAS  Google Scholar 

  20. American Public Health Association. (2012). Standard methods for the examination for water and wastewater (22nd ed.). Washington: American Water Works Association, Water Environmental Federation.

    Google Scholar 

  21. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemmetry, 28, 350–356.

    Article  CAS  Google Scholar 

  22. Bondioli, P., & Bella, L. D. (2005). An alternative spectrophotometric method for the determination of free glycerol in biodiesel. Europen Journal of Lipid Science and Technology, 107, 153–157.

    Article  CAS  Google Scholar 

  23. Rosa, P. R. F., Santos, S. C., & Silva, E. L. (2014b). Different ratios of carbon sources in the fermentation of cheese whey and glucose as substrates for hydrogen and ethanol production in continuous reactors. International Journal of Hydrogen Energy, 39, 1288–1296.

    Article  CAS  Google Scholar 

  24. Walker, M., Zhang, Y., Heaven, S., & Banks, C. (2009). Potential errors in the quantitative evaluation of biogas production in anaerobic digestion processes. Bioresource Technolgy, 100, 6339–6346.

    Article  CAS  Google Scholar 

  25. Guo, W. Q., Ren, N. Q., Chen, Z. B., Liu, B. F., Wang, X. J., Xiang, W. S., & Ding, J. (2008). Simultaneous biohydrogen production and starch wastewater treatment in an acidogenic expanded granular sludge bed reactor by mixed culture for long-term operation. International Journal of Hydrogen Energy, 33, 7397–7404.

    Article  CAS  Google Scholar 

  26. Pachapur, V. L., Sarma, S. J., Brar, S. K., Bihan, Y. L., Buelna, G., & Verma, M. (2015). Biohydrogen production by co-fermentation of crude glycerol and apple pomace hydrolysate using co-culture of Enterobacter aerogenes and Clostridium butyricum. Bioresource Technolgy, 193, 297–306.

    Article  CAS  Google Scholar 

  27. Chookaew, T., O-Thong, S., & Prasertsan, P. (2014). Biohydrogen production from crude glycerol by immobilized Klebsiella sp. TR17 in a UASB reactor and bacterial quantification under non-sterile conditions. International Journal of Hydrogen Energy, 39, 9580–9587.

    Article  CAS  Google Scholar 

  28. Dareioti, M. A., & Kornaros, M. (2014). Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system. Bioresource Technolgy, 167, 407–415.

    Article  CAS  Google Scholar 

  29. Dareioti, M. A., & Kornaros, M. (2015). Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: Effect of hydraulic retention time. Bioresource Technolgy, 175, 553–562.

    Article  CAS  Google Scholar 

  30. Reungsang, A., Sittijunda, S., & O-Thong, S. (2013). Bio-hydrogen production from glycerol by immobilized Enterobacter aerogenesATCC 13048 on heat-treated UASB granules as affected by organic loading rate. International Journal of Hydrogen Energy, 38, 6970–6979.

    Article  CAS  Google Scholar 

  31. Bundhoo, M. A. Z., & Mohee, R. (2016). Inhibition of dark fermentative bio-hydrogen production: a review. International Journal of Hydrogen Energy, 41, 6713–6733.

    Article  CAS  Google Scholar 

  32. Gallardo, R., Faria, C., Rodrigues, L. R., Pereira, M. A., & Alves, M. M. (2014). Anaerobic granular sludge as a biocatalyst for 1,3-propanediol production from glycerol in continuous bioreactors. Bioresource Technolgy, 155, 28–33.

    Article  CAS  Google Scholar 

  33. Lo, Y. C., Chen, X. J., Huang, C. Y., Yuan, Y. J., & Chang, J. S. (2013). Dark fermentative hydrogen production with crude glycerol from biodiesel industry using indigenous hydrogen-producing bacteria. International Journal of Hydrogen Energy, 38, 15815–15822.

    Article  CAS  Google Scholar 

  34. Gonen, C., Gungormusler, M., & Azbar, N. (2012). Comparative evaluation of pumice stone as an alternative immobilization material for 1,3-propanediol production from waste glycerol by immobilized Klebsiella 17 neumonia. Applied Biochemistry and Biotechnology, 168, 2136–2147.

    Article  CAS  Google Scholar 

  35. Gungormusler, M., Gonen, C., & Azbar, N. (2013). Effect of cell immobilization on the production of 1,3-propanediol. New Biotechnology, 30, 623–628.

    Article  CAS  Google Scholar 

  36. Kósmider, A., Drozdzynska, A., Blaszka, K., Leja, K., & Czaczyk, K. (2010). Propionic acid production by Propionibacterium freudenreichii ssp. Shermanii using industrial wastes: Crude glycerol and whey lactose. Polish Journal of Environmental Studies, 19, 1249–1253.

    Google Scholar 

  37. Davila-Vazquez, G., de León-Rodríguez, A., Alatriste-Mondragón, F., & Razo-Flores, E. (2011). The buffer composition impacts the hydrogen production and the microbial community composition in non-axenic cultures. Biomass and Bioenergy, 35, 3174–3181.

    Article  CAS  Google Scholar 

  38. Gomes, B. C., Rosa, P. R. F., Etchebehere, C., Silva, E. L., & Varesche, M. B. A. (2015). Role of homo-and heterofermentative lactic acid bacteria on hydrogen-producing reactors operated with cheese whey wastewater. International Journal of Hydrogen Energy, 40, 8650–8660.

    Article  CAS  Google Scholar 

  39. Azbar, N., Dokgoz, F. T., Keskin, T., Korkmaz, K. S., & Syed, H. M. (2009). Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. International Journal of Hydrogen Energy, 34, 7441–7447.

    Article  CAS  Google Scholar 

  40. Piveteau, P. (1999). Metabolism of lactate and sugars by dairy propionibacteria: a review. Le Lait, 79, 23–41.

    Article  CAS  Google Scholar 

  41. Barbirato, F., Chedaille, D., & Bories, A. (1997). Propionic acid fermentation from glycerol: comparison with conventional substrates. Applied Microbiology and Biotechnology, 47, 441–446.

    Article  CAS  Google Scholar 

  42. Coral, J., Karp, S. G., Vandenberghe, L. P. S., Parada, J. L., Pandey, A., & Soccol, C. R. (2008). Batch fermentation model of propionic acid production by Propionibacterium acidipropionici in different carbon sources. Applied Biochemistry and Biotechnology, 151, 333–341.

    Article  CAS  Google Scholar 

  43. Mathews, J., & Wang, G. (2009). Metabolic pathway engineering for enhanced biohydrogen production. International Journal of Hydrogen Energy, 34, 7404–7416.

    Article  CAS  Google Scholar 

  44. Dishisha, T., Alvarez, M. T., & Hatti-Kaul, R. (2012). Batch- and continuous propionic acid production from glycerol using free and immobilized cells of Propionibacterium acidipropionici. Bioresource Technolgy, 118, 553–562.

    Article  CAS  Google Scholar 

  45. Ito, T., Nakashimada, Y., Senba, K., Matsui, T., & Nishio, N. (2005). Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. Journal of Bioscience and Bioengeneering, 100, 260–265.

    Article  CAS  Google Scholar 

  46. Lin, C. Y., & Lay, C. H. (2004). Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. International Journal of Hydrogen Energy, 29, 41–45.

    Article  CAS  Google Scholar 

  47. Selembo, P. A., Perez, J. M., Lloyd, W. A., & Logan, B. E. (2009). Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures. Biotechnology and Bioengeneering, 104, 1098–1106.

    Article  CAS  Google Scholar 

  48. Gupta, A., & Srivastava, A. K. (2001). Continuous propionic acid production from cheese whey using in situ spin filter. Biotechnology and Bioprocess Engineering, 6, 1–5.

    Article  CAS  Google Scholar 

  49. USDA - United States Department of Agriculture(2016). Foreign Agricultural Service. Dairy: World Markets and Trade. Available at: http://apps.fas.usda.gov/psdonline/circulars/dairy.pdf, accessed at: 30/09/2016

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES), and São Paulo Research Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson Luiz Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, H.J.S., Ramos, L.R. & Silva, E.L. Co-Fermentation of Cheese Whey and Crude Glycerol in EGSB Reactor as a Strategy to Enhance Continuous Hydrogen and Propionic Acid Production. Appl Biochem Biotechnol 183, 712–728 (2017). https://doi.org/10.1007/s12010-017-2459-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2459-7

Keywords

Navigation