Skip to main content

Advertisement

Log in

Biological and Mechanical Effects of Micro-Nanostructured Titanium Surface on an Osteoblastic Cell Line In vitro and Osteointegration In vivo

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Hybrid micro-nanostructure implant surface was produced on titanium (Ti) surface by acid etching and anodic oxidation to improve the biological and mechanical properties. The biological properties of the micro-nanostructure were investigated by simulated body fluid (SBF) soaking test and MC3T3-E1 cell co-culture experiment. The cell proliferation, spreading, and bone sialoprotein (BSP) gene expression were examined by MTT, SEM, and reverse transcription-polymerase chain reaction (RT-PCR), respectively. In addition, the mechanical properties were evaluated by instrumented nanoindentation test and friction-wear test. Furthermore, the effect of the micro-nanostructure surface on implant osteointegration was examined by in vivo experiment. The results showed that the formation of bone-like apatite was accelerated on the micro-nanostructured Ti surface after immersion in simulated body fluid, and the proliferation, spreading, and BSP gene expression of the MC3T3-E1 cells were also upregulated on the modified surface. The micro-nanostructured Ti surface displayed decreased friction coefficient, stiffness value, and Young’s modulus which were much closer to those of the cortical bone, compared to the polished Ti surface. This suggested much better mechanical match to the surrounding bone tissue of the micro-nanostructured Ti surface. Furthermore, the in vivo animal experiment showed that after implantation in the rat femora, the micro-nanostructure surface displayed higher bonding strength between bone tissues and implant; hematoxylin and eosin (H&E) staining suggested that much compact osteoid tissue was observed at the interface of Micro-nano-Ti-bone than polished Ti-bone interface after implantation. Based on these results mentioned above, it was concluded that the improved biological and mechanical properties of the micro-nanostructure endowed Ti surface with good biocompatibility and better osteointegration, implying the enlarged application of the micro-nanostructure surface Ti implants in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Reference

  1. Shukla, V., & Bhathena, Z. (2015). Sustained release of a purified tannin component of Terminalia chebula from a titanium implant surface prevents biofilm formation by Staphylococcus aureus. Applied Biochemistry and Biotechnology, 175, 3542–3556.

    Article  CAS  Google Scholar 

  2. Li, Y., Li, B., Fu, X., Li, J., et al. (2013). Anodic oxidation modification improve bioactivity and biocompatibility of titanium implant surface. Journal of Hard Tissue Biology, 22, 351–358.

    Article  CAS  Google Scholar 

  3. Krishna, B. V., Bose, S., & Bandyopadhyay, A. (2007). Low stiffness porous Ti structures for load-bearing implants. Acta Biomaterialia, 3, 997–1006.

    Article  CAS  Google Scholar 

  4. Wen, C. E., Mabuchi, M., Yamada, Y., Shimojima, K., Chino, Y., & Asahina, T. (2001). Processing of biocompatible porous Ti and Mg. Scripta Mater., 45, 1147–1153.

    Article  CAS  Google Scholar 

  5. Kubo, K., Tsukimura, N., Iwasa, F., Ueno, T., Saruwatari, L., Aita, H., et al. (2009). Cellular behavior on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model. Biomaterials, 30, 5319–5329.

    Article  CAS  Google Scholar 

  6. Fujimasa, I. (1993). Micromachining technology and biomedical engineering. Applied Biochemistry and Biotechnology, 38, 233–242.

    Article  CAS  Google Scholar 

  7. Qiu, K. J., Liu, Y., Zhou, F. Y., Wang, B. L., Li, L., Zheng, Y. F., & Liu, Y. H. (2015). Microstructure, mechanical properties, castability and in vitro biocompatibility of Ti–Bi alloys developed for dental applications. Acta Biomaterialia, 15, 254–265.

    Article  CAS  Google Scholar 

  8. Kumari, R., & Majumdar, J. D. (2016). Microstructural characterization of multilayered coating on titanium based alloy (Ti–6Al–4V) substrate for bio-implant application. Advanced Science Letters, 22, 256–260.

    Article  Google Scholar 

  9. Alexander, E. M., Andrey, M., Rimma, L., Rolf, Z., Simon, B., Philippe, H., & Florian, D. T. (2016). Microstructure and mechanical properties of Ti–15Zr alloy used as dental implant material. Journal of the Mechanical Behavior of Biomedical Materials, 62, 384–398.

    Article  Google Scholar 

  10. Hyzy, S. L., Cheng, A., Cohen, D. J., Yatzkaier, G., Whitehead, A. J., Clohessy, R. M., Gittens, R. A., Boyan, B. D., & Schwartz, Z. (2016). Novel hydrophilic nanostructured microtexture on direct metal laser sintered Ti6Al4V surfaces enhances osteoblast response in vitro and osseointegration in a rabbit model. Journal of Biomedial Materials Research Part A, 104A, 2086–2098.

    Article  Google Scholar 

  11. Li, B., Li, Y., Li, J., Fu, X., et al. (2014a). Influence of nanostructures on the biological properties of Ti implants after anodic oxidation. Journal of Materials Science: Materials in Medicine, 25, 199–205.

    CAS  Google Scholar 

  12. Tahriri, M., & Moztarzadeh, F. (2014). Preparation, characterization, and in vitro biological evaluation of PLGA/nano-fluorohydroxyapatite (FHA) microsphere-sintered scaffolds for biomedical applications. Applied Biochemistry and Biotechnology, 172, 2465–2479.

    Article  CAS  Google Scholar 

  13. Zamani, Y., Rabiee, M., Shokrgozar, M. A., Bonakdar, S., & Tahriri, M. (2013). Response of human mesenchymal stem cells to patterned and randomly oriented poly(vinyl alcohol) nano-fibrous scaffolds surface-modified with Arg-Gly-Asp (RGD) ligand. Applied Biochemistry and Biotechnology, 171, 1513–1524.

    Article  CAS  Google Scholar 

  14. He, F., Zhang, F., Yang, G., Wang, X., & Zhao, S. (2010). Enhanced initial proliferation and differentiation of MC3T3-E1 cells on HF/HNO3 solution treated nanostructural titanium surface. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 110, e13–e22.

    Article  Google Scholar 

  15. Xie, Y., Ao, H., Xin, S., & Zheng, X. (2014). Enhanced cellular responses to titanium coating with hierarchical hybrid structure. Materials Science and Engineering: C, 38, 272–277.

    Article  CAS  Google Scholar 

  16. Balasundaram, G., Yao, C., & Webster, T. J. (2008). TiO2 nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion. Journal of Biomedical Materials Research, 84A, 447–453.

    Article  CAS  Google Scholar 

  17. Hsu, H. C., Wu, S. C., Hsu, S. K., Liao, Y. H., & Ho, W. F. (2016). Bioactivity of hybrid micro/nano-textured Ti-5Si surface by acid etching and heat treatment. Mater. Design., 104, 205–210.

    Article  CAS  Google Scholar 

  18. Kumar, E. T. D., & Ganesh, V. (2014). Immobilization of horseradish peroxidase enzyme on nanoporous titanium dioxide electrodes and its structural and electrochemical characterizations. Applied Biochemistry and Biotechnology, 174, 1043–1058.

    Article  Google Scholar 

  19. Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., & Yamamuro, T. (1990). Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. Journal of Biomedical Materials Research, 24, 721–734.

    Article  CAS  Google Scholar 

  20. Gerlier, D., & Thomasset, N. (1986). Use of MTT colorimetric assay to measure cell activation. Journal of Immunological Methods, 9, 457–463.

    Google Scholar 

  21. Zhao, L., Mei, S., Chu, P. K., Zhang, Y., & Wu, Z. (2010). The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials, 31, 5072–5082.

    Article  CAS  Google Scholar 

  22. Zhao, X., Wang, T., Qian, S., Liu, X., Sun, J., & Li, B. (2016). Silicon-doped titanium dioxide nanotubes promoted bone formation on titanium implants. International Journal of Molecular Sciences, 17, 292.

    Article  Google Scholar 

  23. Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7, 1564–1583.

    Article  CAS  Google Scholar 

  24. Kim, M. T. (1996). Influence of substrates on the elastic reaction of films for the microindentation tests. Thin Solid Films, 283, 12–16.

    Article  CAS  Google Scholar 

  25. Zhu, H., Niu, Y., Lin, C., Huang, L., Ji, H., & Zheng, X. (2013). Microstructures and tribological properties of vacuum plasma sprayed B4C–Ni composite coatings. Ceramics International, 39l, 101–110.

    Article  Google Scholar 

  26. Liang, C., Wang, H., Yang, J., Cai, Y., Hu, X., Yang, Y., Li, B., Li, H., Li, C., & Yang, X. (2013). Femtosecond laser-induced micropattern and Ca/P deposition on Ti implant surface and its acceleration on early osseointegration. ACS Applied Materials & Interfaces, 5, 8179–8186.

    Article  CAS  Google Scholar 

  27. Macak, J. M., Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S., & Schmuki, P. (2007). TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Current Opinion in Solid State & Materials Science, 11, 3–18.

    Article  CAS  Google Scholar 

  28. Jiang, P., Liang, J., Song, R., Zhang, Y., Ren, L., Zhang, L., Tang, P., & Lin, C. (2015). Effect of octacalcium-phosphate-modified micro/nanostructured titania surfaces on osteoblast response. ACS Applied Materials & Interfaces, 7, 14384–14396.

    Article  CAS  Google Scholar 

  29. Hatakeyama, W., Taira, M., Chosa, N., Kihara, H., Ishisaki, A., & Kondo, H. (2013). Effects of apatite particle size in two apatite/collagen composites on the osteogenic differentiation profile of osteoblastic cells. International Journal of Molecular Medicine, 32, 1255–1261.

    Article  CAS  Google Scholar 

  30. Lumetti, S., Manfredi, E., Ferraris, S., Spriano, S., Passeri, G., Ghiacci, G., Macaluso, G., & Galli, C. (2016). The response of osteoblastic MC3T3-E1 cells to micro- and nano-textured, hydrophilic and bioactive titanium surfaces. Journal of Materials Science: Materials in Medicine, 27, 68.

    CAS  Google Scholar 

  31. Weetall, H. H. (1993). Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports. Applied Biochemistry and Biotechnology, 41, 157–188.

    Article  CAS  Google Scholar 

  32. Li, B., Li, Y., Li, J., et al. (2014b). Improvement of biological properties of titanium by anodic oxidation and ultraviolet irradiation. Applied Surface Science, 37, 202–208.

    Article  Google Scholar 

  33. Erik, H., Jane, E. A., Graeme, K. H., Frank, B., & Harvey, A. (2015). Goldberg. Loss of bone sialoprotein leads to impaired endochondral bone development and mineralization. Bone, 71, 145–154.

    Article  Google Scholar 

  34. García-Alonso, M. C., Saldaña, L., Vallés, G., González-Carrasco, J. L., González-Cabrero, J., Martínez, M. E., Gil-Garay, E., & Munuera, L. (2003). In vitro corrosion behaviour and osteoblast response of thermally oxidised Ti6Al4V alloy. Biomaterials, 24, 19–26.

    Article  Google Scholar 

  35. Le, H., Ghatak, S., Yeung, C., Tellkamp, F., Günschmann, C., Dieterich, C., Yeroslaviz, A., Habermann, B., Pombo, A., Niessen, C. M., & Wickström, S. A. (2016). Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment. Nature Cell Biology, 18, 864–875.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support by the National Natural Science Foundation of China (Project No.51201056, No.51401146, and No.81500886), Technology Foundation for returned overseas Chinese scholars (No.C2015003038), Science and Technology Plan Project of Hebei Province (No.13211027), Tianjin Natural Science Foundation (No.16JCYBJC28700), and Science and Technology Correspondent Project of Tianjin (No. 14JCTPJC00496).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baoe Li or Chunyong Liang.

Additional information

Jingzu Hao and Ying Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, J., Li, Y., Li, B. et al. Biological and Mechanical Effects of Micro-Nanostructured Titanium Surface on an Osteoblastic Cell Line In vitro and Osteointegration In vivo. Appl Biochem Biotechnol 183, 280–292 (2017). https://doi.org/10.1007/s12010-017-2444-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2444-1

Keywords

Navigation