Skip to main content

Advertisement

Log in

Evaluation of Magnetonanoparticles Conjugated with New Angiogenesis Peptides in Intracranial Glioma Tumors by MRI

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Angiogenesis plays a critical role in progression of malignant gliomas. The development of glioma-specific labeling molecules that can aid detection and visualization of angiogenesis can help surgical planning and improve treatment outcome. The aim of this study was to evaluate if two peptides (GX1 and RGD-GX1) linked to angiogenesis can be used as an MR-imaging markers of angiogenesis. MR imaging was performed in U87 glioblastoma-bearing NOD-SCID mice at different time points between 15 and 120 min post-injection to visualize particle distribution. GX1 and RGD-GX1 exhibited the highest accumulation in U87 glioblastoma at 120 min post i.v. administration. GX1-conjugated agents lead to higher decrease in transverse relaxation time (T 2) (i.e., stronger contrast enhancement) than RGD-GX1-conjugated agents in U87 glioblastoma tumor model. In addition, we tested if U87-IDH1R132 mutated cell line had different pattern of GX1 or RGD-GX1 particle accumulation. Responses in U87-IDH1WT followed a similar pattern with GX1 contrast agents; however, lower contrast enhancement was observed with RGD-GX1 agents. The specific binding of these peptides to human glioblastoma xenograft in the brain was confirmed by magnetic resonance imaging. The contrast enhancement following injection of magnetonanoparticles conjugated to GX1 peptide matched well with CD31 staining and iron staining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ostrom, Q. T., Gittleman, H., Liao, P., Rouse, C., Chen, Y., Dowling, J., Wolinsky, Y., Kruchko, C., & Barnholtz-Sloan, J. (2014). CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-Oncology, 16(Suppl 4), iv1–i63.

    Article  Google Scholar 

  2. Bello, L., Giussani, C., Carrabba, G., Pluderi, M., Costa, F., & Bikfalvi, A. (2004). Angiogenesis and invasion in gliomas. Cancer Treatment and Research, 117, 263–284.

    Article  CAS  Google Scholar 

  3. Skobe, M., Rockwel, L. P., Goldstein, N., Vosseler, S., & Fusenig, N. E. (1997). Halting angiogenesis suppresses carcinoma cell invasion. Nature Med., 3, 1222–1227.

    Article  CAS  Google Scholar 

  4. Parsons, D. W., Jones, S., Zhang, X., Lin, J. C., Leary, R. J., Angenendt, P., Mankoo, P., Carter, H., Siu, I. M., Gallia, G. L., Olivi, A., McLendon, R., Rasheed, B. A., Keir, S., Nikolskaya, T., Nikolsky, Y., Busam, D. A., Tekleab, H., Diaz Jr., L. A., Hartigan, J., Smith, D. R., Strausberg, R. L., Marie, S. K., Shinjo, S. M., Yan, H., Riggins, G. J., Bigner, D. D., Karchin, R., Papadopoulos, N., Parmigiani, G., Vogelstein, B., Velculescu, V. E., & Kinzler, K. W. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science, 321(5897), 1807–1812.

    Article  CAS  Google Scholar 

  5. Yan, H., Parsons, D. W., Jin, G., McLendon, R., Rasheed, B. A., Yuan, W., Kos, I., Batinic-Haberle, I., Jones, S., Riggins, G. J., Friedman, H., Friedman, A., Reardon, D., Herndon, J., Kinzler, K. W., Velculescu, V. E., Vogelstein, B., & Bigner, D. D. (2009). IDH1 and IDH2 mutations in gliomas. The New England Journal of Medicine, 360(8), 765–773.

    Article  CAS  Google Scholar 

  6. Xu, X., Zhao, J., Xu, Z., Peng, B., Huang, Q., Arnold, E., & Ding, J. (2004). Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. The Journal of Biological Chemistry, 279(32), 33946–33957.

    Article  CAS  Google Scholar 

  7. Nobusawa, S., Watanabe, T., Kleihues, P., & Ohgaki, H. (2009). IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clinical Cancer Research, 15(19), 6002–6007.

    Article  CAS  Google Scholar 

  8. Smith, J. W., & Cheresh, D. A. (1988). The arg-gly-asp binding domain of the vitronectin receptor: photoaffinity cross-linking implicates amino acid residues 61–203 of the ß subunit. The Journal of Biological Chemistry, 263, 18726–18731.

    CAS  Google Scholar 

  9. Zhi, M., Wu, K. C., Dong, L., Hao, Z. M., Deng, T. Z., Hong, L., Liang, S. H., Zhao, P. T., Qiao, T. D., Wang, Y., Xu, X., & Fan, D. M. (2004). Characterization of a specific phage-displayed peptide binding to vasculature of human gastric cancer. Cancer Biology & Therapy, 3, 1232–1235.

    Article  CAS  Google Scholar 

  10. Dijkgraaf, I., Kruijtzer, A. W., Liu, S., Soede, A. C., Oyen, W. J. G., Corstens, F. H. M., Liskamp, R. M. J., & Boerman, O. C. (2007). Improved targeting of the avb3 integrin by multimerisation of RGD peptides. European Journal of Nuclear Medicine and Molecular Imaging, 34(2), 267–273.

    Article  CAS  Google Scholar 

  11. Liu, S., Kim, Y. S., Hsieh, W. Y., & Sreerama, S. G. (2008). Coligant effect on the solution stability, biodistribution and metabolism of the 99mTc-labeled cyclic RGDfK tetramer. Nuclear Medicine and Biology, 35, 111–121.

    Article  CAS  Google Scholar 

  12. Moncelet, D., Bouchaud, V., Mellet, P., Miraux, S., Franconi, J. M., & Voisin, P. (2013). Cellular density effect on RGD ligand internalization in glioblastoma for MRI application. PloS One, 8(12), e82777.

    Article  Google Scholar 

  13. Schottelius, M., & Wester, H. J. (2009). Molecular imaging targeted receptor. Methods, 48, 161–177.

    Article  CAS  Google Scholar 

  14. Zhang, X., Xiong, Z., Wu, Y., Cai, W., Tseng, J. R., Gambhir, S. S., & Chen, X. (2006). Quantitative PET imaging of tumor integrin alphavbeta3 expression with 18F-FRGD2. Journal of Nuclear Medicine, 47(1), 113–121.

    CAS  Google Scholar 

  15. Desgrosellier, J. S., & Cheresh, D. A. (2010). Integrins in cancer: biological implications and therapeutic opportunities. Nature Reviews. Cancer, 10, 9–22.

    Article  CAS  Google Scholar 

  16. Guo, W., & Giancotti, F. G. (2004). Integrin signalling during tumour progression. Nature Reviews. Molecular Cell Biology, 5, 816–826.

    Article  CAS  Google Scholar 

  17. Hynes, R. O. (1992). Integrins: versatility, modulation, and signaling in cell adhesión. Cell, 69(1), 11–25.

    Article  CAS  Google Scholar 

  18. Jin, Z. H., Furukawa, T., Waki, A., Akaji, K., Coll, J. L., Saga, T., & Fujibayashi, Y. (2010). Effect of multimerization of a linear arg-gly-asp peptide on integrin binding affinity and specificity. Biological & Pharmaceutical Bulletin, 33(3), 370–378.

    Article  CAS  Google Scholar 

  19. Wu, H., Chen, H., Pan, D., Ma, Y., Liang, S., Wan, Y., & Fang, Y. (2014). Imaging integrin αvβ 3 and NRP-1 positive gliomas with a novel fluorine-18 labeled RGD-ATWLPPR heterodimeric peptide probe. Molecular Imaging and Biology, 16(6), 781–792.

    Article  Google Scholar 

  20. Chen, B., Cao, S., Zhang, Y., Wang, X., Liu, J., Hui, X., Wan, Y., Du, W., Wang, L., Wu, K., & Fan, D. (2009). A novel peptide (GX1) homing to gastric cancer vasculature inhibits angiogenesis and cooperates with TNF alpha in anti-tumor therapy. BMC Cell Biology, 10, 63.

    Article  CAS  Google Scholar 

  21. Chen, K., Sun, X., Niu, G., Ma, Y., Yap, L., Hui, X., Wu, K., Fan, D., Conti, P. S., & Chen, X. (2012). Evaluation of 64Cu labeled GX1: a phage display peptide probe for PET imaging of tumor vasculature. Molecular Imaging and Biology, 14(1), 96–105.

    Article  Google Scholar 

  22. Hu, H., Yin, J., Wang, M., Liang, C., Song, H., Wang, J., Nie, Y., & Liang, J. (2014). GX1 targeting delivery of rmhTNFα evaluated using multimodality imaging. International Journal of Pharmaceutics, 461(1–2), 181–191.

    Article  CAS  Google Scholar 

  23. Hui, X., Han, Y., Liang, S., Liu, Z., Liu, J., Hong, L., Zhao, L., He, L., Cao, S., Chen, B., Yan, K., Jin, B., Chai, N., Wang, J., Wu, K., & Fan, D. (2008). Specific targeting of the vasculature of gastric cancer by a new tumor-homing peptide CGNSNPKSC. Journal of Controlled Release, 131, 86–93.

    Article  CAS  Google Scholar 

  24. Xin, J., Zhang, X., Liang, J., Xia, L., Yin, J., Nie, Y., Wu, K., & Tian, J. (2013). In vivo gastric cancer targeting and imaging using novel symmetric cyanine dye-conjugated GX1 peptide probes. Bioconjugate Chemistry, 24(7), 1134–1143.

    Article  CAS  Google Scholar 

  25. Li, Z. B., Wu, Z., Chen, K., Ryu, E. K., & Chen, X. (2008). 18F-labeled BBN-RGD heterodimer for prostate cancer imaging. Journal of Nuclear Medicine, 49, 453–461.

    Article  CAS  Google Scholar 

  26. Liu, Z., Yan, Y., Chin, F. T., Wang, F., & Chen, X. (2009). Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD-bombesin heterodimer 18F-FB-PEG3-Glu-RGD-BBN. Journal of Medicinal Chemistry, 52(2), 425–432.

    Article  CAS  Google Scholar 

  27. Yang, J., Guo, H., Galazzi, F., Berwick, M., Padilla, R. S., & Miao, Y. (2009). Evaluation of a novel arg-gly-asp-conjugated r-melanocyte stimulating hormone hybrid peptide for potential melanoma therapy. Bioconjugate Chemistry, 20, 1634–1642.

    Article  CAS  Google Scholar 

  28. Yang, J., Guo, H., & Miao, Y. (2010). Technetium-99m-labeled arg-gly-asp-conjugated alpha-melanocyte stimulating hormone hybrid peptides for human melanoma imaging. Nuclear Medicine and Biology, 37(8), 873–883.

    Article  CAS  Google Scholar 

  29. Liu, Z., & Wang, F. (2010). Dual-targeted molecular probes for cancer imaging. Current Pharmaceutical Biotechnology, 11, 610–619.

    Article  Google Scholar 

  30. Oliveira, E. A., & Faintuch, B. L. (2015). Radiolabeling and biological evaluation of the GX1 and RGD-GX1 peptide sequence for angiogenesis targeting. Nuclear Medicine and Biology, 42(2), 123–130.

    Article  CAS  Google Scholar 

  31. Oliveira, E. A., Faintuch, B. L., Targino, R. C., Moro, A. M., Martinez, R. C., Pagano, R. L., Fonoff, E. T., Carneiro, C. G., Garcez, A. T., Faria, D. P., & Buchpiguel, C. A. (2016). Evaluation of GX1 and RGD-GX1 peptides as new radiotracers for angiogenesis evaluation in experimental glioma models. Amino Acids, 48(3), 821–831.

    Article  Google Scholar 

  32. Lazovic, J., Soto, H., Piccioni, D., Lou, J. R., Li, S., Mirsadraei, L., Yong, W., Prins, R., Liau, L. M., Ellingson, B. M., Cloughesy, T. F., Lai, A., & Pope, W. B. (2012). Detection of 2-hydroxyglutaric acid in vivo by proton magnetic resonance spectroscopy in U87 glioma cells overexpressing isocitrate dehydrogenase-1 mutation. Neuro-Oncology, 14(12), 1465–1472.

    Article  CAS  Google Scholar 

  33. Akhtari, M., Bragin, A., Moats, R., Frew, A., & Mandelkern, M. (2012). Functionalized magnetonanoparticles in imaging brain neuronal activity using MRI. Brain Topography, 25(4), 374–388.

    Article  Google Scholar 

  34. Akhtari, M., Bragin, A., Cohen, M., Moats, R., Brenker, F., Lynch, M. D., Vinters, H. V., & Engel Jr., J. (2008). Functionalized magnetonanoparticles for MRI diagnosis and localization in epilepsy. Epilepsia, 49, 1419–1430.

    Article  Google Scholar 

  35. Akhtari, M., Pope, W., Mathern, G., Moats, R., Frew, A., & Mandelkern, M. (2013). Functionalized magnetonanoparticles in visualization of intracranial tumors on MRI. Molecular Imaging and Biology, 15(3), 299–306.

    Article  Google Scholar 

  36. Akhtari, M., & Engel, J. (2006). Patents PCT/US06/10334. EU06739214.2.

  37. Akhtari, M., & Engel, J. (2009). Pat # WO 2009/123734 A1.

  38. Goldenberg, D. M., Sharkey, R. M., Paganelli, G., Barbet, J., & Chatal, J. F. (2006). Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy. Journal of Clinical Oncology, 24, 823–834.

    Article  CAS  Google Scholar 

  39. Orlova, A., Magnusson, M., Eriksson, T. L., Nilsson, M., Larsson, B., Höidén-Guthenberg, I., Widström, C., Carlsson, J., Tolmachev, V., Ståhl, S., & Nilsson, F. Y. (2006). Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Research, 66, 4339–4348.

    Article  CAS  Google Scholar 

  40. Decristoforo, C., Faintuch-Linkowski, B., Rey, A., von Guggenberg, E., Rupprich, M., Hernandez-Gonzales, I., Rodrigo, T., & Haubner, R. (2006). [99mTc]HYNIC-RGD for imaging integrin alphavbeta3 expression. Nuclear Medicine and Biology, 33, 945–952.

    Article  CAS  Google Scholar 

  41. Decristoforo, C., Santos, I., Pietzsch, H. J., Kuenstler, J. U., Duatti, A., Smith, C. J., Rey, A., Alberto, R., Von Guggenberg, E., & Haubner, R. (2007). Comparison of in vitro and in vivo properties of [99mTc]cRGD peptides labeled using different novel Tc-cores. The Quarterly Journal Nuclear Medicine and Molecular Imaging, 51, 33–41.

    CAS  Google Scholar 

  42. Janssen, M. L., Oyen, W. J., Dijkgraaf, I., Massuger, L. F., Frielink, C., Edwards, D. S., Rajopadhye, M., Boonstra, H., Corstens, F. H., & Boerman, O. C. (2002). Tumor targeting with radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model. Cancer Research, 62, 6146–6151.

    CAS  Google Scholar 

  43. Su, Z. F., He, J., Rusckowski, M., & Hnatowich, D. J. (2003). In vitro cell studies of technetium-99m labeled RGD-HYNIC peptide, a comparison of tricine and EDDA as co-ligands. Nuclear Medicine and Biology, 30, 141–149.

    Article  CAS  Google Scholar 

  44. Denardo, S. J., Yao, Z., Lam, K. M., Song, A., Burker, P. A., Merick, G. R., Lamborn, K. R., O’Donnell, R. T., & Denardo, G. L. (2003). Effect of molecular size of pegylated peptide on the pharmacokinetics and tumor targeting in lymphoma-bearing mice. Clinical Cancer Research, 1(9), 38545–38645.

    Google Scholar 

  45. Vonarbourg, A., Passirani, C., Saulnier, P., & Benoit, J. P. (2006). Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials, 27(24), 4356–4373.

    Article  CAS  Google Scholar 

  46. Däpp, S., García Garayoa, E., Maes, V., Brans, L., Tourwé, D. A., Müller, C., & Schibli, R. (2011). PEGylation of (99m)Tc-labeled bombesin analogues improves their pharmacokinetic properties. Nuclear Medicine and Biology, 38(7), 997–1009.

    Article  Google Scholar 

  47. Mier, W., Krämer, S., Zitzmann, S., Altmann, A., Leotta, K., Schierbaum, U., Schnölzer, M., Eisenhut, M., & Haberkorn, U. (2013). PEGylation enables the specific tumor accumulation of a peptide identified by phage display. Organic & Biomolecular Chemistry, 11(16), 2706–2711.

    Article  CAS  Google Scholar 

  48. Hampton, M. B., & Orrenius, S. (1997). Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Letters, 414(3), 552–556.

    Article  CAS  Google Scholar 

  49. Li, S., Chou, A. P., Chen, W., Chen, R., Deng, Y., Phillips, H. S., Selfridge, J., Zurayk, M., Lou, J. J., Everson, R. G., Wu, K. C., Faull, K. F., Cloughesy, T., Liau, L. M., & Lai, A. (2013). Overexpression of isocitrate dehydrogenase mutant proteins renders glioma cells more sensitive to radiation. Neuro-Oncology, 15(1), 57–68.

    Article  Google Scholar 

  50. Ramsey, M. R., & Sharpless, N. E. (2006). ROS as a tumour suppressor? Nature Cell Biology, 8(11), 1213–1215.

    Article  CAS  Google Scholar 

  51. Takahashi, A., Ohtani, N., Yamakoshi, K., Iida, S., Tahara, H., Nakayama, K., Nakayama, K. I., Ide, T., Saya, H., & Hara, E. (2006). Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nature Cell Biology, 8(11), 1291–1297.

    Article  CAS  Google Scholar 

  52. Fei, X. F., Zhang, Q. B., Dong, J., Diao, Y., Wang, Z. M., Li, R. J., Wu, Z. C., Wang, A. D., Lan, Q., Zhang, S. M., & Huang, Q. (2010). Development of clinically relevant orthotopic xenograft mouse model of metastatic lung cancer and glioblastoma through surgical tumor tissues injection with trocar. Journal of Experimental & Clinical Cancer Research, 29, 84.

    Article  Google Scholar 

  53. Islam, T., & Harisinghani, M. G. (2009). Overview of nanoparticle use in cancer imaging. Cancer Biomarkers, 5, 61–67.

    Article  CAS  Google Scholar 

  54. Molday, H. S. (1984). US Pat 2,452,773.

  55. Muldoon, L. L., Sandor, M., Pinkston, K. E., & Neuwelt, E. A. (2005). Imaging, distribution, and toxicity of superparamagnetic iron oxide magnetic resonance nanoparticles in the rat brain and intracerebral tumor. Neurosurgery, 57, 785–796.

    Article  Google Scholar 

  56. Pope, W. B., Prins, R. M., Albert Thomas, M., Nagarajan, R., Yen, K. E., Bittinger, M. A., Salamon, N., Chou, A. P., Yong, W. H., Soto, H., Wilson, N., Driggers, E., Jang, H. G., Su, S. M., Schenkein, D. P., Lai, A., Cloughesy, T. F., Kornblum, H. I., Wu, H., Fantin, V. R., & Liau, L. M. (2012). Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. Journal of Neuro-Oncology, 107(1), 197–205.

    Article  CAS  Google Scholar 

  57. Chakraborty, M., Jain, S., & Rani, V. (2011). Nanotechnology: emerging tool for diagnostics and therapeutics. Applied Biochemistry and Biotechnology, 165(5–6), 1178–1187. doi:10.1007/s12010-011-9336-6 Review.

    Article  CAS  Google Scholar 

  58. Fernandez-Fernandez, A., Manchanda, R., & McGoron, A. J. (2011). Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Applied Biochemistry and Biotechnology, 165(7–8), 1628–1651.

    Article  CAS  Google Scholar 

  59. Zhou, X., Chen, L., Wang, A., Ma, Y., Zhang, H., & Zhu, Y. (2015). Multifunctional fluorescent magnetic nanoparticles for lung cancer stem cells research. Colloids and Surfaces. B, Biointerfaces, 20(134), 431–439.

    Article  Google Scholar 

  60. Rosenberger, I., Strauss, A., Dobiasch, S., Weis, C., Szanyi, S., Gil-Iceta, L., Alonso, E., González Esparza, M., Gómez-Vallejo, V., Szczupak, B., Plaza-García, S., Mirzaei, S., Israel, L. L., Bianchessi, S., Scanziani, E., Lellouche, J. P., Knoll, P., Werner, J., Felix, K., Grenacher, L., Reese, T., Kreuter, J., & Jiménez-González, M. (2015). Targeted diagnostic magnetic nanoparticles for medical imaging of pancreatic cancer. Journal of Controlled Release, 17(214), 76–84.

    Article  Google Scholar 

  61. Yan, X., Song, X., Wang, Z. (2016). Construction of specific magnetic resonance imaging/optical dual-modality molecular probe used for imaging angiogenesis of gastric cancer. Artif Cells Nanomed Biotechnol. 1–5.

  62. Liu, C., Liu, D. B., Long, G. X., Wang, J. F., Mei, Q., Hu, G. Y., Qiu, H., & Hu, G. Q. (2013). Specific targeting of angiogenesis in lung cancer with RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a 4.7 T magnetic resonance scanner. Chinese Medical Journal, 126(12), 2242–2247.

    CAS  Google Scholar 

  63. Zhang, C., Jugold, M., Woenne, E. C., Lammers, T., Morgenstern, B., Mueller, M. M., Zentgraf, H., Bock, M., Eisenhut, M., Semmler, W., & Kiessling, F. (2007). Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Research, 67, 1555–1562.

    Article  CAS  Google Scholar 

  64. Park, J. A., Lee, J. J., Jung, J. C., Yu, D. Y., Oh, C., Ha, S., Kim, T. J., & Chang, Y. (2008). Gd-DOTA conjugate of RGD as a potential tumor-targeting MRI contrast agent. Chembiochem, 9, 2811–2813.

    Article  CAS  Google Scholar 

  65. Sun, J., Teng, Z. G., Tian, Y., Wang, J. D., Guo, Y., Kim, D. H., Larson, A. C., & Lu, G. M. (2014). Targeted fluorescent magnetic nanoparticles for imaging of human breast cancer. International Journal of Clinical and Experimental Medicine, 7(12), 4747–4758.

    Google Scholar 

  66. Yang, J., Luo, Y., Xu, Y., Li, J., Zhang, Z., Wang, H., Shen, M., Shi, X., & Zhang, G. (2015). Conjugation of iron oxide nanoparticles with RGD-modified dendrimers for targeted tumor MR imaging. ACS Applied Materials & Interfaces, 7(9), 5420–5428.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for a post-graduate grant by Fundação de Amparo a Pesquisa do Estado de São Paulo, Brazil (FAPESP 2011/12405-0). We thank preclinical imaging and histology unit of Vienna Biocenter Core Facilities (VBCF) for their help with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica Aparecida de Oliveira.

Ethics declarations

Funding

Funding was provided by Fundação de Amparo a Pesquisa do Estado de São Paulo, Brazil (FAPESP 2011/12405-0).

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures were approved by the University of California, Los Angeles, Institutional Animal Care and Use Committee.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, E.A., Lazovic, J., Guo, L. et al. Evaluation of Magnetonanoparticles Conjugated with New Angiogenesis Peptides in Intracranial Glioma Tumors by MRI. Appl Biochem Biotechnol 183, 265–279 (2017). https://doi.org/10.1007/s12010-017-2443-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2443-2

Keywords

Navigation