Skip to main content
Log in

Characterization of Polyhydroxyalkanoate Produced by Bacillus megaterium VB89 Isolated from Nisargruna Biogas Plant

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Polyhydroxyalkanoates (PHAs) are naturally occurring biodegradable polymers that can curb the extensive use of polypropylene based plastics. In contrast to chemically synthesized polypropylene plastics, PHAs are biodegradable and thus environmentally safe. PHAs have attracted much attention as biocompatible and biodegradable thermoplastics. The present study involves isolation of bacteria from different environments capable of synthesizing PHAs. The bacterium producing highest yield of PHA (0.672 ± 0.041 g/L) was identified as Bacillus megaterium VB89 by biochemical and molecular techniques such as 16S rDNA sequence analysis. Strain VB89 produced polyhydroxybutyrate (PHB) as revealed by FTIR and NMR. This PHB had an average molecular weight of 2.89 × 105 Da and a polydispersity index of 2.37. Thermal properties of the PHB included a glass transition temperature of 13.97 °C, a melting temperature of 181.74 °C, and a decomposition temperature of 234 °C. All these properties indicated that VB89 produced PHB of high purity and good thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Suriyamongkol, P., Weselake, R., Narine, S., Moloney, M., & Shah, S. (2007). Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—a review. Biotechnology Advances, 25(2), 148–175.

    Article  CAS  Google Scholar 

  2. Madison, L. L., & Huisman, G. W. (1999). Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiology and Molecular Biology Reviews, 63(1), 21–53.

    CAS  Google Scholar 

  3. Verlinden, R. A., Hill, D. J., Kenward, M. A., Williams, C. D., & Radecka, I. (2007). Bacterial synthesis of biodegradable polyhydroxyalkanoates. Journal of Applied Microbiology, 102(6), 1437–1449.

    Article  CAS  Google Scholar 

  4. Bonartsev, A. P., Myshkina, V. L., Nikolaeva, D. A., Furina, E. K., Makhina, T. A., Livshits, V. A., et al. (2007). Biosynthesis, biodegradation, and application of poly (3-hydroxybutyrate) and its copolymers-natural polyesters produced by diazotrophic bacteria. Communicating Current Research and Educational Topics and Trends in Applied Microbiology, 1, 295–307.

    Google Scholar 

  5. Steinbüchel, A., & Lütke-Eversloh, T. (2003). Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochemical Engineering Journal, 16(2), 81–96.

    Article  Google Scholar 

  6. Khanna, S., & Srivastava, A. K. (2005). Recent advances in microbial polyhydroxyalkanoates. Process Biochemistry, 40(2), 607–619.

    Article  CAS  Google Scholar 

  7. Urtuvia, V., Villegas, P., González, M., & Seeger, M. (2014). Bacterial production of the biodegradable plastics polyhydroxyalkanoates. International Journal of Biological Macromolecules, 70, 208–213.

    Article  CAS  Google Scholar 

  8. Lee, S. Y. (1996). Bacterial polyhydroxyalkanoates. Biotechnology and Bioengineering, 49, 1

  9. Valappil, S. P., Boccaccini, A. R., Bucke, C., & Roy, I. (2007). Polyhydroxyalkanoates in gram-positive bacteria: Insights from the genera Bacillus and Streptomyces. Antonie Van Leeuwenhoek, 91(1), 1–17.

    Article  CAS  Google Scholar 

  10. Lageveen, R. G., Huisman, G. W., Preusting, H., Ketelaar, P., Eggink, G., & Witholt, B. (1988). Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Applied and Environmental Microbiology, 54(12), 2924–2932.

    CAS  Google Scholar 

  11. Spiekermann, P., Rehm, B. H., Kalscheuer, R., Baumeister, D., & Steinbüchel, A. (1999). A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Archives of Microbiology, 171(2), 73–80.

    Article  CAS  Google Scholar 

  12. Shrivastav, A., Mishra, S. K., Shethia, B., Pancha, I., Jain, D., & Mishra, S. (2010). Isolation of promising bacterial strains from soil and marine environment for polyhydroxyalkanoates (PHAs) production utilizing Jatropha biodiesel byproduct. International Journal of Biological Macromolecules, 47(2), 283–287.

    Article  CAS  Google Scholar 

  13. Holt, J. G. (2000). Bergey’s manual of determinative bacteriology (9th ed.). Williams and Wilkins, Baltimore: Lippincot.

    Google Scholar 

  14. Frank, J. A., Reich, C. I., Sharma, S., Weisbaum, J. S., Wilson, B. A., & Olsen, G. J. (2008). Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Applied and Environmental Microbiology, 74(8), 2461–2470.

    Article  CAS  Google Scholar 

  15. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402.

    Article  CAS  Google Scholar 

  16. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.

    Article  Google Scholar 

  17. Hahn, S. K., Chang, Y. K., & Lee, S. Y. (1995). Recovery and characterization of poly (3-hydroxybutyric acid) synthesized in Alcaligenes eutrophus and recombinant Escherichia coli. Applied and Environmental Microbiology, 61(1), 34–39.

    CAS  Google Scholar 

  18. Kulkarni, S. O., Kanekar, P. P., Nilegaonkar, S. S., Sarnaik, S. S., & Jog, J. P. (2010). Production and characterization of a biodegradable poly (hydroxybutyrate-co-hydroxyvalerate) (PHB-co-PHV) copolymer by moderately haloalkalitolerant Halomonas campisalis MCM B-1027 isolated from Lonar Lake, India. Bioresource Technology, 101(24), 9765–9771.

    Article  CAS  Google Scholar 

  19. Barham, P. J., Keller, A., Otun, E. L., & Holmes, P. A. (1984). Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. Journal of Materials Science, 19(9), 2781–2794.

    Article  CAS  Google Scholar 

  20. Zhang, H. F., Ma, L., Wang, Z. H., & Chen, G. Q. (2009). Biosynthesis and characterization of 3-hydroxyalkanoate terpolyesters with adjustable properties by Aeromonas hydrophila. Biotechnology and Bioengineering, 104(3), 582–589.

    Article  CAS  Google Scholar 

  21. Zheng, B., Lu, J., Tong, Y., Li, H., & Chen, Q. (2015). Isolation and characterization of poly (3-hydroxybutyrate)-producing bacteria from aerobic sludge. Applied Biochemistry and Biotechnology, 175(1), 421–427.

    Article  CAS  Google Scholar 

  22. Otari, S. V., & Ghosh, J. S. (2009). Production and characterization of the polymer polyhydroxy butyrate-co-polyhydroxy valerate by Bacillus megaterium NCIM 2475. Current Research Journal of Biological Sciences, 1(2), 23–26.

    CAS  Google Scholar 

  23. Doi, Y., Kunioka, M., Nakamura, Y., & Soga, K. (1986). Proton and carbon-13 NMR analysis of poly (β-hydroxybutyrate) isolated from Bacillus megaterium. Macromolecules, 19(4), 1274–1276.

    Article  CAS  Google Scholar 

  24. Jan, S., Roblot, C., Courtois, J., Courtois, B., Barbotin, J. N., & Seguin, J. P. (1996). 1H NMR spectroscopic determination of poly 3-hydroxybutyrate extracted from microbial biomass. Enzyme and Microbial Technology, 18(3), 195–201.

    Article  CAS  Google Scholar 

  25. Sudesh, K., Abe, H., & Doi, Y. (2000). Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in Polymer Science, 25(10), 1503–1555.

    Article  CAS  Google Scholar 

  26. Valappil, S. P., Misra, S. K., Boccaccini, A. R., Keshavarz, T., Bucke, C., & Roy, I. (2007). Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterised Bacillus cereus SPV. Journal of Biotechnology, 132(3), 251–258.

    Article  CAS  Google Scholar 

  27. Pal, S., & Paul, A. K. (2002). Physico-chemical characteristics of poly (3-hydroxybutyric acid) isolated from Azotobacter chroococcum MAL-201. Current Science, 83(12), 1565–1567.

    CAS  Google Scholar 

  28. Holmes, P. A. (1998). In D. C. Bassett (Ed.), In developments in crystalline polymers, biologically produced (R)-3-hydroxyalkanoate polymers and copolymers (pp. 1–65). London: Elsevier.

    Google Scholar 

  29. Cruz, M. V., Paiva, A., Lisboa, P., Freitas, F., Alves, V. D., Simões, P., & Reis, M. A. (2014). Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technology. Bioresource Technology, 157, 360–363.

    Article  CAS  Google Scholar 

  30. Kavitha, G., Kurinjimalar, C., Sivakumar, K., Palani, P., & Rengasamy, R. (2016). Biosynthesis, purification and characterization of polyhydroxybutyrate from Botryococcus braunii kütz. International Journal of Biological Macromolecules, 89, 700–706.

    Article  CAS  Google Scholar 

  31. Hassan, M. A., Bakhiet, E. K., Ali, S. G., & Hussien, H. R. (2016). Production and characterization of polyhydroxybutyrate (PHB) produced by Bacillus sp. isolated from Egypt. Journal Applied Pharmaceutical Science, 6(4), 46–51.

    Article  Google Scholar 

  32. Ansari, S., & Fatma, T. (2016). Cyanobacterial polyhydroxybutyrate (PHB): Screening, optimization and characterization. PloS One, 11(6), e0158168.

    Article  Google Scholar 

  33. Iannace, S., Maffezzoli, A., Leo, G., & Nicolais, L. (2001). Influence of crystal and amorphous phase morphology on hydrolytic degradation of PLLA subjected to different processing conditions. Polymer, 42(8), 3799–3807.

    Article  CAS  Google Scholar 

  34. Yang, S., Leong, K. F., Du, Z., & Chua, C. K. (2001). The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Engineering, 7(6), 679–689.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. S. Kale (BARC, Mumbai) for providing the sample from Nisargruna Biogas Plant. The authors are grateful to the Department of Microbiology, Savitribai Phule Pune University, Pune-411007 for providing all the laboratory facilities and financial support. VB is thankful to the DST-PURSE program, New Delhi, India, for funding the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Deopurkar.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baikar, V., Rane, A. & Deopurkar, R. Characterization of Polyhydroxyalkanoate Produced by Bacillus megaterium VB89 Isolated from Nisargruna Biogas Plant. Appl Biochem Biotechnol 183, 241–253 (2017). https://doi.org/10.1007/s12010-017-2441-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2441-4

Keywords

Navigation