Skip to main content

Advertisement

Log in

Composite Electrospun Scaffold Derived from Recombinant Fibroin of Weaver Ant (Oecophylla smaragdina) as Cell-Substratum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Unlike silkworm (Bombyx mori) fibroin (SF), weaver ant (Oecophylla smaragdina) fibroin (WAF) is much less studied. Due to differences in amino acid composition and protein structure, this work aimed to produce the recombinant WAF protein, designated as WAF1, and investigated on its potential application as a biomaterial for producing a cell-substratum. The composite electrospun scaffolds derived from poly(vinyl alcohol) (PVA), WAF1, and extracted SF were produced by electrospinning. SEM images revealed non-woven and smooth fibers of PVA, PVA-WAF1, and PVA-SF scaffolds with the average diameters of 204.1 ± 59.9, 206.5 ± 71.5, and 238.4 ± 77.9 nm, respectively. ATR-FTIR spectra indicated characteristic absorption peaks related to the chemical structure of PVA and protein. The PVA-WAF1 scaffold demonstrated a higher water uptake, a slightly higher rate of degradation, and a similar low cytotoxicity as compared with the PVA-SF scaffold. Although the adhesion and proliferation of cells on the PVA-WAF1 scaffold were lower than those on the PVA-SF scaffold, it showed significantly greater values of adhering and proliferating cells than the PVA scaffold. The results of this work suggested that WAF1 could be used as a biomaterial for producing a cell-substratum that supports cell adhesion and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zafar, M. S., Khurshid, Z., & Almas, K. (2015). Oral tissue engineering progress and challenges. Tissue Engineering and Regenerative Medicine, 12, 387–397.

    Article  CAS  Google Scholar 

  2. Stock, U. A., & Vacanti, J. P. (2001). Tissue engineering: current state and prospects. Annual Review of Medicine, 52, 443–451.

    Article  CAS  Google Scholar 

  3. Chaisri, P., Chingsungnoen, A., & Siri, S. (2013). Repetitive Arg-Gly-Asp peptide as a cell-stimulating agent on electrospun poly(ε-caprolactone) scaffold for tissue engineering. Biotechnology Journal, 8, 1323–1331.

    Article  CAS  Google Scholar 

  4. O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materialstoday, 14, 88–95.

    Google Scholar 

  5. Lannutti, J., Reneker, D., Ma, T., Tomasko, D., & Farson, D. (2007). Electrospinning for tissue engineering scaffolds. Materials Science and Engineering: C, 27, 504–509.

    Article  CAS  Google Scholar 

  6. Repanas, A., Andriopoulou, S., & Glasmacher, B. (2016). The significance of electrospinning as a method to create fibrous scaffolds for biomedical engineering and drug delivery applications. Journal of Drug Delivery Science and Technology, 31, 137–146.

    Article  CAS  Google Scholar 

  7. Zafar, M., Najeeb, S., Khurshid, Z., Vazirzadeh, M., Zohaib, S., Najeeb, B., & Sefat, F. (2016). Potential of electrospun nanofibers for biomedical and dental applications. Materials, 9, 73.

    Article  Google Scholar 

  8. Chen, F.-M., & Liu, X. (2016). Advancing biomaterials of human origin for tissue engineering. Progress in Polymer Science, 53, 86–168.

    Article  CAS  Google Scholar 

  9. Wadbua, P., Promdonkoy, B., Maensiri, S., & Siri, S. (2010). Different properties of electrospun fibrous scaffolds of separated heavy-chain and light-chain fibroins of Bombyx mori. International Journal of Biological Macromolecules, 46, 493–501.

    Article  CAS  Google Scholar 

  10. Altman, G. H., Diaz, F., Jakuba, C., Calabro, T., Horan, R. L., Chen, J., Lu, H., Richmond, J., & Kaplan, D. L. (2003). Silk-based biomaterials. Biomaterials, 24, 401–416.

    Article  CAS  Google Scholar 

  11. Koh, L.-D., Cheng, Y., Teng, C.-P., Khin, Y.-W., Loh, X.-J., Tee, S.-Y., Low, M., Ye, E., Yu, H.-D., Zhang, Y.-W., & Han, M.-Y. (2015). Structures, mechanical properties and applications of silk fibroin materials. Progress in Polymer Science, 46, 86–110.

    Article  CAS  Google Scholar 

  12. Wangkulangkul, P., Jaipaew, J., Puttawibul, P., & Meesane, J. (2016). Constructed silk fibroin scaffolds to mimic adipose tissue as engineered implantation materials in post-subcutaneous tumor removal. Materials & Design, 106, 428–435.

    Article  CAS  Google Scholar 

  13. Shi, J., Lua, S., Du, N., Liu, X., & Song, J. (2008). Identification, recombinant production and structural characterization of four silk proteins from the Asiatic honeybee Apis cerana. Biomaterials, 29, 2820–2828.

    Article  CAS  Google Scholar 

  14. Siri, S., & Maensiri, S. (2010). Alternative biomaterials: natural, non-woven, fibroin-based silk nanofibers of weaver ants (Oecophylla smaragdina). International Journal of Biological Macromolecules, 46, 529–534.

    Article  CAS  Google Scholar 

  15. Baoyong, L., Jian, Z., Denglong, C., & Min, L. (2010). Evaluation of a new type of wound dressing made from recombinant spider silk protein using rat models. Burns, 36, 891–896.

    Article  Google Scholar 

  16. Schlüns, E. A., Wegener, B. J., Schlüns, H., Azuma, N., Robson, S. K. A., & Crozier, R. H. (2009). Breeding system, colony and population structure in the weaver ant Oecophylla smaragdina. Molecular Ecology, 18, 156–167.

    Article  Google Scholar 

  17. Sutherland, T. D., Weisman, S., Trueman, H. E., Sriskantha, A., Trueman, J. W. H., & Haritos, V. S. (2007). Conservation of essential design features in coiled coil silks. Molecular Biology and Evolution, 24, 2424–2432.

    Article  CAS  Google Scholar 

  18. Ajisawa, A. (1998). Dissolution of silk fibroin with calciumchloride/ethanol aqueous solution. Sericultural Science of Japan, 67, 91–94.

    CAS  Google Scholar 

  19. Mendes, A. C., Gorzelanny, C., Halter, N., Schneider, S. W., & Chronakis, I. S. (2016). Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery. International Journal of Pharmaceutics, 510, 48–56.

    Article  CAS  Google Scholar 

  20. Chaisri, P., Chingsungnoen, A., & Siri, S. (2015). Repetitive Gly-Leu-Lys-Gly-Glu-Asn-Arg-Gly-Asp peptide derived from collagen and fibronectin for improving cell–scaffold interaction. Applied Biochemistry and Biotechnology, 175, 2489–2500.

    Article  CAS  Google Scholar 

  21. Das, I., De, G., Hupa, L., & Vallittu, P. K. (2016). Porous SiO2 nanofiber grafted novel bioactive glass–ceramic coating: a structural scaffold for uniform apatite precipitation and oriented cell proliferation on inert implant. Materials Science and Engineering: C, 62, 206–214.

    Article  CAS  Google Scholar 

  22. Rost, B. (2001). Review: protein secondary structure prediction continues to rise. Journal of Structural Biology, 134, 204–218.

    Article  CAS  Google Scholar 

  23. Sutherland, T. D., Campbell, P. M., Weisman, S., Trueman, H. E., Sriskantha, A., Wanjura, W. J., & Haritos, V. S. (2006). A highly divergent gene cluster in honey bees encodes a novel silk family. Genome Research, 16, 1414–1421.

    Article  CAS  Google Scholar 

  24. Sashina, E. S., Bochek, A. M., Novoselov, N. P., & Kirichenko, D. A. (2006). Structure and solubility of natural silk fibroin. Russian Journal of Applied Chemistry, 79, 869–876.

    Article  CAS  Google Scholar 

  25. Calamak, S., Aksoy, E. A., Ertas, N., Erdogdu, C., Sagıroglu, M., & Ulubayram, K. (2015). Ag/silk fibroin nanofibers: effect of fibroin morphology on Ag+ release and antibacterial activity. European Polymer Journal, 67, 99–112.

    Article  CAS  Google Scholar 

  26. Mottaghitalab, F., Farokhi, M., Shokrgozar, M. A., Atyabi, F., & Hosseinkhani, H. (2015). Silk fibroin nanoparticle as a novel drug delivery system. Journal of Controlled Release, 206, 161–176.

    Article  CAS  Google Scholar 

  27. Inoue, S., Tanaka, K., Arisaka, F., Kimura, S., Ohtomo, K., & Mizuno, S. (2000). Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. Journal of Biological Chemistry, 275, 40517–40528.

    Article  CAS  Google Scholar 

  28. Kundu, B., Rajkhowa, R., Kundu, S. C., & Wang, X. (2013). Silk fibroin biomaterials for tissue regenerations. Advanced Drug Delivery Reviews, 65, 457–470.

    Article  CAS  Google Scholar 

  29. Tanaka, K., Inoue, S., & Mizuno, S. (1999). Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the H-L complex of silk fibroin produced by Bombyx mori. Insect Biochemistry and Molecular Biology, 29, 269–276.

    Article  CAS  Google Scholar 

  30. Isarankura Na Ayutthaya, S., Tanpichai, S., Sangkhun, W., & Wootthikanokkhan, J. (2016). Effect of clay content on morphology and processability of electrospun keratin/poly(lactic acid) nanofiber. International Journal of Biological Macromolecules, 85, 585–595.

    Article  CAS  Google Scholar 

  31. Zhou, J., Cao, C., Ma, X., & Lin, J. (2010). Electrospinning of silk fibroin and collagen for vascular tissue engineering. International Journal of Biological Macromolecules, 47, 514–519.

    Article  CAS  Google Scholar 

  32. Han, F., Dong, Y., Su, Z., Yin, R., Song, A., & Li, S. (2014). Preparation, characteristics and assessment of a novel gelatin–chitosan sponge scaffold as skin tissue engineering material. International Journal of Pharmaceutics, 476, 124–133.

    Article  CAS  Google Scholar 

  33. Lim, M., Kim, D., Han, H., Khan, S. B., & Seo, J. (2015). Water sorption and water-resistance properties of poly(vinyl alcohol)/clay nanocomposite films: effects of chemical structure and morphology. Polymer Composites, 36, 660–667.

    Article  CAS  Google Scholar 

  34. Wang, H., Fang, Y., Bao, Z., Jin, X., Zhu, W., Wang, L., Liu, T., Ji, H., Wang, H., Xu, S., & Sima, Y. (2014). Identification of a Bombyx mori gene encoding small heat shock protein BmHsp27.4 expressed in response to high-temperature stress. Gene, 538, 56–62.

    Article  CAS  Google Scholar 

  35. Sutherland, T. D., Weisman, S., Walker, A. A., & Mudie, S. T. (2012). The coiled coil silk of bees, ants, and hornets. Biopolymers, 97, 446–454.

    Article  CAS  Google Scholar 

  36. Campbell, P. M., Trueman, H. E., Zhang, Q., Kojima, K., Kameda, T., & Sutherland, T. D. (2014). Cross-linking in the silks of bees, ants and hornets. Insect Biochemistry and Molecular Biology, 48, 40–50.

    Article  CAS  Google Scholar 

  37. Cao, Y., & Wang, B. (2009). Biodegradation of silk biomaterials. International Journal of Molecular Sciences, 10, 1514–1524.

    Article  CAS  Google Scholar 

  38. Kim, Y. H., Baek, N. S., Han, Y. H., Chung, M.-A., & Jung, S.-D. (2011). Enhancement of neuronal cell adhesion by covalent binding of poly-D-lysine. Journal of Neuroscience Methods, 202, 38–44.

    Article  CAS  Google Scholar 

  39. Lin, L., Hao, R., Xiong, W., & Zhong, J. (2015). Quantitative analyses of the effect of silk fibroin/nano-hydroxyapatite composites on osteogenic differentiation of MG-63 human osteosarcoma cells. Journal of Bioscience and Bioengineering, 119, 591–595.

    Article  CAS  Google Scholar 

  40. Song, D. W., Kim, S. H., Kim, H. H., Lee, K. H., Ki, C. S., & Park, Y. H. (2016). Multi-biofunction of antimicrobial peptide-immobilized silk fibroin nanofiber membrane: implications for wound healing. Acta Biomaterialia, 39, 146–155.

    Article  CAS  Google Scholar 

  41. Jaipaew, J., Wangkulangkul, P., Meesane, J., Raungrut, P., & Puttawibul, P. (2016). Mimicked cartilage scaffolds of silk fibroin/hyaluronic acid with stem cells for osteoarthritis surgery: morphological, mechanical, and physical clues. Materials Science and Engineering: C, 64, 173–182.

    Article  CAS  Google Scholar 

  42. Kim, S. H., Park, H. S., Lee, O. J., Chao, J. R., Park, H. J., Lee, J. M., Ju, H. W., Moon, B. M., Park, Y. R., Song, J. E., Khang, G., & Park, C. H. (2016). Fabrication of duck’s feet collagen–silk hybrid biomaterial for tissue engineering. International Journal of Biological Macromolecules, 85, 442–450.

    Article  CAS  Google Scholar 

  43. Teuschl, A. H., Neutsch, L., Monforte, X., Rünzler, D., van Griensven, M., Gabor, F., & Redl, H. (2014). Enhanced cell adhesion on silk fibroin via lectin surface modification. Acta Biomaterialia, 10, 2506–2517.

    Article  CAS  Google Scholar 

  44. Horiguchi, M., Fujimori, C., Ogiwara, K., Moriyama, A., & Takahashi, T. (2008). Collagen type-I α1 chain mRNA is expressed in the follicle cells of the medaka ovary. Zoological Science, 25, 937–945.

    Article  CAS  Google Scholar 

  45. Ge, J., Apicella, M., Mills, J. A., Garçon, L., French, D. L., Weiss, M. J., Bessler, M., & Mason, P. J. (2015). Dysregulation of the transforming growth factor β pathway in induced pluripotent stem cells generated from patients with diamond blackfan anemia. PloS One, 10, e0134878.

    Article  Google Scholar 

  46. Mammalian Gene Collection Program Team. (2002). Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America, 99, 16899–16903.

    Article  Google Scholar 

  47. Bačáková, L., Filova, E., Rypáček, F., Švorčík, V., & Starý, V. (2004). Cell adhesion on artificial materials for tissue engineering. Physiological Research, 53, S35–S45.

    Google Scholar 

  48. Yang, D., Lü, X., Hong, Y., Xi, T., & Zhang, D. (2013). The molecular mechanism of mediation of adsorbed serum proteins to endothelial cells adhesion and growth on biomaterials. Biomaterials, 34, 5747–5758.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program of the Center of Excellence at Khon Kaen University. The student scholarship is supported by the Program Science Achievement Scholarship of Thailand (SAST) of the Commission on Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sineenat Siri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khamhaengpol, A., Siri, S. Composite Electrospun Scaffold Derived from Recombinant Fibroin of Weaver Ant (Oecophylla smaragdina) as Cell-Substratum. Appl Biochem Biotechnol 183, 110–125 (2017). https://doi.org/10.1007/s12010-017-2433-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2433-4

Keywords

Navigation