Skip to main content
Log in

Employing Central Composite Design for Evaluation of Biomass Production by Fusarium venenatum: In Vivo Antioxidant and Antihyperlipidemic Properties

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present study deals with the cost effective production of biomass from Fusarium venenatum using different carbon sources (cane sugar, brown sugar, malt and fructose). Optimization of selected carbon sources and seed size using Central Composite Response Surface Design (CCRSD) indicated that sucrose (1.64 g/100 mL) and seed size (10% v/v) were optimal in maximizing biomass yield (0.5602 g/100 mL, p < 0.0001) and protein yield (49.99%, p < 0.01) of Fusarium venenatum. The acetonitrile and methanolic extracts of biomass showed promising antioxidant activity (DPPH assay, 59.7 and 51.9% respectively, 250 μg/mL). The mycoprotein, in the Triton-X 100-induced hyperlipidemic model in rats, exhibited significant reduction of serum lipids levels (p < 0.01 at 100, 200 and 400 mg/kg body weight) with significant increase in HDL level. It also exhibited antibacterial activity against S. aureus. LC-MS analysis of ACN extract of biomass showed two major peaks (Compound 3: m/e 701.4941 and Compound 2: m/e 651.4984). Spectral matching with standard MS libraries indicated that compound 3 may be structurally similar to sterol glycoside (m/e 716.99) with absence of methyl group. Also, compound 2 may be cholest-5-en-3-ol (3β)-, 9-octadecenoate. These results showed that Fusarium venenatum can act as a source of natural antioxidant along with acting as a valuable protein source. It may also prove to be beneficial in treatment of hyperlipidemia and other cardiovascular conditions. Further bioactivity-guided fractionation and isolation will help to obtain bioactives that may serve as leads for design of new class of therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Swaminathan, S., Vaz, M., & Kurpad, A. V. (2012). Protein intakes in India. The British Journal of Nutrition, 108, S50–S58.

    Article  CAS  Google Scholar 

  2. Gour, S., Nupur, M., Singh, A., & Bhatnagar, P. (2015). Single cell protein production: a review. International Journal of Current Microbiology and Applied Sciences, 4(9), 251–262.

    Google Scholar 

  3. Trinci, A. P. J. (1990). Mycoprotein: a 20 year overnight success story. Mycological Research, 9, 1–13.

    Google Scholar 

  4. Wiebe, M. G. (2004). Quorn™ mycoprotein-overview of a successful fungal product. Mycologist, 18, 17–20.

    Article  Google Scholar 

  5. Trinci, A. P. J. (1994a). Evolution of the Quorn myco-protein fungus, Fusarium graminearum A3/5. Microbiology, 140, 2181–2188.

    Article  CAS  Google Scholar 

  6. Edelman, J., Fewell, A., & Solomons, G. L. (1983). Myco-protein – a new food. Nutr Abstr Rev Clin Nutr, 53, 471–480.

    Google Scholar 

  7. Miller, S. A., & Dwyer, J. T. (2001). Evaluating the safety and nutritional value of mycoprotein. Food Technology, 55, 42–47.

    CAS  Google Scholar 

  8. Burley, V. J., Paul, A. W., & Blundell, J. E. (1993). Influence of a high-fibre food (myco-protein) on appetite: effects on satiation (within meals) and satiety (following meals). European Journal of Clinical Nutrition, 47, 409–418.

    CAS  Google Scholar 

  9. Turnbull, W. H., Bessey, D., Walton, J., & Leeds, A. R. (1991). The effect of myco-protein on hunger, satiety and subsequent food consumption. In G. Ailaud, B. Guy-Grand, M. Lafontan, & D. Ricquier (Eds.), Obesity in Europe 91 (pp. 67–70). London: Libbey.

    Google Scholar 

  10. Turnbull, W. H., Leeds, A. R., & Edwards, D. G. (1990). Effect of mycoprotein on blood lipids. The American Journal of Clinical Nutrition, 52, 646–650.

    CAS  Google Scholar 

  11. Turnbull, W. H., Leeds, A. R., & Edwards, D. G. (1992). Mycoprotein reduces blood lipids in free- living subjects. The American Journal of Clinical Nutrition, 55, 415–419.

    CAS  Google Scholar 

  12. Vogel, H. J. (1956). A convenient growth medium for Neurospora (medium N). Microbial Genet Bull, 13, 42.

    Google Scholar 

  13. Sedighi, M., Jalili, H., Ranaei-Siadat, S. O., & Amrane, A. (2016). Potential health effects of enzymatic protein hydrolysates from Chlorella vulgaris. Appl Food Biotechnol, 3(3), 160–169.

    CAS  Google Scholar 

  14. Anderson, C., & Solomons, G. L. (1984). Primary metabolism and biomass production from Fusarium. In M. O. Moss & J. E. Smith (Eds.), The applied mycology of fusarium (pp. 231–250). Cambridge: Cambridge University Press.

    Google Scholar 

  15. Prakash, P., Karthick Raja Namasivayam, S., & Sunkar, S. (2015). Design of medium components for the enhanced production of mycoprotein by Fusarium venenatum using placket burman model. RJPBCS, 6, 1251–1255.

    Google Scholar 

  16. Khosravi-Darani, K., Zoghi, A., Alavi, S. A., & Fatemi, S. S. A. (2008). Application of Plackett Burman design for citric acid production from pretreated and untreated wheat straw. IJCCE, 27(1), 91–104.

    CAS  Google Scholar 

  17. Jahadi, M., Khosravi-Darani, K., Ehsani, M. R., Mozafari, M. R., Saboury, A., Zoghi, A., & Mohammadi, M. (2016). Modelling of proteolysis in Iranian brined cheese using proteinase-loaded nanoliposome. IJDT, 69(1), 57–62.

    CAS  Google Scholar 

  18. Hosseini, S. M., Khosravi-Darani, K., Mohammadifar, M. A., & Nikoopour, H. (2009). Production of mycoprotein by Fusarium venenatum growth on modified vogel medium. Asian Journal of Chemistry, 21, 4017–4022.

    CAS  Google Scholar 

  19. AOAC. (2005). AOAC official methods of analysis. Gaithersburg: AOAC International.

    Google Scholar 

  20. Sadasivam, S., & Manickam, A. (2008). Biochemical methods (3rd ed.pp. 31–90). India: New Age International (P) Limited.

    Google Scholar 

  21. Elleuch, L., Shaaban, M., Smaoui, S., Mellouli, L., Karray-Rebai, I., Fourati-Ben Fguira, L., Shaaban, K. A., & Laatsch, H. (2014). Bioactive secondary metabolites from a new terrestrial Streptomyces sp. TN262. Applied Biochemistry and Biotechnology, 174, 1535–1547.

    Article  Google Scholar 

  22. Brand, W. W., Cuvelier, H. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Food Sci Technol, 82, 25–30.

    Google Scholar 

  23. Prakash, P., & Namasivayam, S. K. R. (2013). Anti-oxidative and anti-tumour activity of biomass extract of mycoprotein Fusarium venenatum. African Journal of Microbiology Research, 7, 1697–1702.

    Article  Google Scholar 

  24. Magaldi, S., Mala-Essayag, S., Hartung de capriles, C., Perer, C., Colella, M. T., Olaizola, C., & Ontiveras, Y. (2004). Well diffusion for antifungal susceptibility testing. IJID, 8, 39–45.

    CAS  Google Scholar 

  25. Bahar, B. S., Serpil, U., Hasan, Y. S., Halil, I. U., & Refiye, Y. (2013). Antibacterial, Antiurease, and antioxidant activities of some Arylidene Baebiturates. Applied Biochem Biotechnol, 171, 2030–2039.

    Article  Google Scholar 

  26. Institutional Animal Ethical Committee (IACE) guidelines on the regulation of scientific experiments on animals, Ministry of Environment and Forests, (Animal Welfare Division), Government of India June 2007.

  27. GRAS notification for mycoprotein. (2001).

  28. Gundamaraju, R., Hwi, K. K., Singla, R. K., Vemuri, R. C., & Mulapalli, S. B. (2014). Antihyperlipidemic potential of Albizia Amara (Roxb) Boiv, bark against triton X-100 induced hyperlipidemic condition in rats. Pharmacognosy Research, 6(4), 267–273.

    Article  Google Scholar 

  29. Beyer, M., Röding, S., Ludewig, A., & Verreet, J. A. (2004). Germination and survival of Fusarium graminearum macroconidia as affected by environmental factors. Journal of Phytopathology, 152, 92–97.

    Article  Google Scholar 

  30. Panagiotou, G., Pachidou, F., Petroutsos, D., Olsson, L., & Christakopoulos, P. (2008). Fermentation characteristics of Fusarium oxysporum grown on acetate. Bioresource Technology, 99, 7397–7401.

    Article  CAS  Google Scholar 

  31. Wiebe, M. G. (2002). Myco-protein from Fusarium venenatum: a well-established product for human consumption. Applied Microbiology and Biotechnology, 58, 421–427.

    Article  CAS  Google Scholar 

  32. Trinci, A. P. J. (1994b). Evolution of the QuornB myco-protein fungus, fusarium graminearum A315. Microbiology, 140, 2181–2188.

    Article  CAS  Google Scholar 

  33. Harborne, J. B., & Baxter, H. (1995). Phytochemical dictionary. A handbook of bioactive compounds from plants. London: Taylor & Francis.

    Google Scholar 

  34. Kellner, A., Correll, J. W., & Ladd, A. T. (1951). Sustained hyperlipemia induced in rabbits by means of intravenously injected surface-active agents. The Journal of Experimental Medicine, 93, 373–384.

    Article  CAS  Google Scholar 

  35. Otway, S., & Robinson, D. S. (1967). The effect of a non-ionic detergent (triton WR 1339) on the removal of triglyceride fatty acids from the blood of the rat. The Journal of Physiology, 190, 309–319.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Principal, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India, for providing the necessary infrastructural facilities to carry out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asha Byju Thomas.

Ethics declarations

Competing Interests

The authors declare that there are no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, A.B., Shetane, T.D., Singha, R.G. et al. Employing Central Composite Design for Evaluation of Biomass Production by Fusarium venenatum: In Vivo Antioxidant and Antihyperlipidemic Properties. Appl Biochem Biotechnol 183, 91–109 (2017). https://doi.org/10.1007/s12010-017-2432-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2432-5

Keywords

Navigation