Skip to main content

Advertisement

Log in

Differential Maturation of miR-17 ~ 92 Cluster Members in Human Cancer Cell Lines

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

While some microRNAs are transcribed from a specific promoter, at least one third of human miRNA genes are clustered, wherein multiple miRNA genes are generated from a single primary transcript such as miR-17 ~ 92 cluster. Although six members of the cluster are generated from a single transcript, the mature level of each member may be diverse in various cell types. Here, we attempt to monitor the mature level of miR-17, miR-92a, and miR-20a from miR-17 ~ 92 cluster in blood (HL60 (human promyelocytic leukemia cells) and Jurkat) and breast (MDA-MB-231 and MCF-7) cancer cell lines. Interestingly, different mature levels of the miRNAs were observed in each cell line. While miR-20 was highly matured in HL60 and MDA-MB-231 cell lines, higher mature level of miR-92a was observed in Jurkat cell line compared to that of miR-20 and miR-17. Further, the mature level of miRNAs was also measured in normal and cancer cell lines. Although the mature level of miR-17 and miR-92a increased in HL60 and Jurkat cell lines, miR-20 expression showed an almost identical level in blood cancer cell lines compared to controls. Conversely, miR-20 mature level significantly increased in breast cancer cell lines whereas the expression level of miR-92a was comparable in MDA-MB-231, MCF-7, and MCF-10A cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahsani, Z., Mohammadi-Yeganeh, S., Kia, V., Karimkhanloo, H., Zarghami, N., & Paryan, M. (2016). WNT1 gene from WNT signaling pathway is a direct target of miR-122 in hepatocellular carcinoma. Applied Biochemistry and Biotechnology, 1–14.

  2. Nilsson, S., Möller, C., Jirström, K., LEE, A., Busch, S., & Lamb, R. (2012). Downregulation of miR-92a is associated with aggressive breast cancer features and tumour macrophage infiltration. PloS One, 7(4), e36051.

    Article  CAS  Google Scholar 

  3. Ghanbarian, H., Grandjean, V., François, C., & Rassoulzadegan, M. (2011). A network of regulations by small non-coding RNAs: the P-TEFb kinase in development and pathology. Frontiers in Genetics, 2(95), 1–6.

    Google Scholar 

  4. Olson, P., Lu, J., Zhang, H., Shai, A., Matthew, G. C., Wang, Y., Libutti, S. K., Nakakura, E. K., Golub, T., & Hanahan, D. (2009). MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes & Development, 23(18), 2152–2165.

    Article  CAS  Google Scholar 

  5. Abasi, M., Bazi, Z., Mohammadi-Yeganeh, S., Soleimani, M., Haghpanah, V., Zargami, N., & Ghanbarian, H. (2016). 7SK small nuclear RNA transcription level down-regulates in human tumors and stem cells. Medical Oncology, 33(11), 128.

    Article  Google Scholar 

  6. Babak, T., Zhang, W., Morris, Q., Blencowe, B., & Hugheset, T. R. (2004). Probing microRNAs with microarrays: tissue specificity and functional inference. RNA, 10(11), 1813–1819.

    Article  CAS  Google Scholar 

  7. Jones, P. A., & Baylin, S. B. (2007). The epigenomics of cancer. Cell, 128(4), 683–692.

    Article  CAS  Google Scholar 

  8. Keramati, F., Seyedjafari, E., Fallah, P., Soleimani, M., & Ghanbarian, H. (2015). 7SK small nuclear RNA inhibits cancer cell proliferation through apoptosis induction. Tumor Biology, 36(4), 2809–2814.

    Article  CAS  Google Scholar 

  9. Wang, N., Xu, H. L., Zhao, X., Wen, X., Wang, F. T., Wang, S. Y., Fu, L. L., Liu, B., & Bao, J. K. (2012). Network-based identification of novel connections among apoptotic signaling pathways in cancer. Applied Biochemistry and Biotechnology, 167(3), 621–631.

    Article  CAS  Google Scholar 

  10. Zhang, L., Sun, J., Wang, B., Ren, J. C., Su, W., & Zhang, T. (2015). MicroRNA-10b triggers the epithelial–mesenchymal transition (EMT) of laryngeal carcinoma Hep-2 cells by directly targeting the E-cadherin. Applied Biochemistry and Biotechnology, 176(1), 33–44.

    Article  CAS  Google Scholar 

  11. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., & Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294(5543), 853–858.

    Article  CAS  Google Scholar 

  12. Lau, N. C., Lim, L., Weinstein, E., & Bartel, D. (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294(5543), 858–862.

    Article  CAS  Google Scholar 

  13. Mourelatos, Z., Dostie, J., Paushkin, S., Sharma, A., Charroux, B., Abel, L., Rappsilber, J., Mann, M., & Dreyfuss, G. (2002). miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes & Development, 16(6), 720–728.

    Article  CAS  Google Scholar 

  14. Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., Brownstein, M., Tuschl, T., & Margalit, H. (2005). Clustering and conservation patterns of human microRNAs. Nucleic Acids Research, 33(8), 2697–2706.

    Article  CAS  Google Scholar 

  15. Concepcion, C.P., Bonetti, C., & Ventura, A. (2012). The miR-17-92 family of microRNA clusters in development and disease. Cancer journal (Sudbury, Mass.), 18(3), 262.

  16. Mogilyansky, E., & Rigoutsos, I. (2013). The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death & Differentiation, 20(12), 1603–1614.

    Article  CAS  Google Scholar 

  17. Grillari, J., Hackl, M., & Grillari-Voglauer, R. (2010). miR-17–92 cluster: ups and downs in cancer and aging. Biogerontology, 11(4), 501–506.

    Article  CAS  Google Scholar 

  18. Li, H., Bian, C., Liao, L., Li, J., & Zhao, R. C. (2011). miR-17-5p promotes human breast cancer cell migration and invasion through suppression of HBP1. Breast Cancer Research and Treatment, 126(3), 565–575.

    Article  CAS  Google Scholar 

  19. Tsuchida, A., Ohno, S., Wu, W., Borjigin, N., Fujita, K., Aoki, T., Ueda, S., Takanashi, M., & Kuroda, M. (2011). miR-92 is a key oncogenic component of the miR-17–92 cluster in colon cancer. Cancer Science, 102(12), 2264–2271.

    Article  CAS  Google Scholar 

  20. Thomson, J. M., Newman, M., Parker, J., Morin, K. E., Wright, T., & Hammond, S. (2006). Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes & Development, 20(16), 2202–2207.

    Article  CAS  Google Scholar 

  21. Obernosterer, G., Leuschner, P. J., Alenius, M., & Martinez, J. (2006). Post-transcriptional regulation of microRNA expression. RNA, 12(7), 1161–1167.

    Article  CAS  Google Scholar 

  22. Gallagher, R., Collins, S., Trujillo, J., McCredie, K., Ahearn, M., Tsai, S., Metzgar, R., Aulakh, G., Ting, R., & Ruscetti, F. (1979). Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood, 54(3), 713–733.

    CAS  Google Scholar 

  23. Schneider, U., Schwenk, H. U., & Bornkamm, G. (1977). Characterization of EBV-genome negative “null” and “T” cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. International Journal of Cancer, 19(5), 621–626.

    Article  CAS  Google Scholar 

  24. Mohammadi-yeganeh, S., Pryan, M., Samlee, S. M., Oleimani, M., Arefian, E., Azadmanesh, K., Mostafavi, E., Mahdian, R., & Karimpoor, M. (2013). Development of a robust low cost stem-loop real-time quantification PCR technique for miRNA expression analysis. Molecular Biology Reports, 40, 3665–3674.

    Article  CAS  Google Scholar 

  25. Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), e36–e36.

    Article  Google Scholar 

  26. Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101–1108.

    Article  CAS  Google Scholar 

  27. Lee, Y., Jeon, K., Lee, J. T., Kim, S., & Kim, V. (2002). MicroRNA maturation: stepwise processing and sub cellular localization. The EMBO Journal, 21(17), 4663–4670.

    Article  CAS  Google Scholar 

  28. Li, Y., Vecchiarelli-F, L., Li, Y., Egan, S., Spaner, D., Hough, M., & Ben-David, Y. (2012). The miR-17-92 cluster expands multipotent hematopoietic progenitors whereas imbalanced expression of its individual oncogenic miRNAs promotes leukemia in mice. Blood, 119(19), 4486–4498.

    Article  CAS  Google Scholar 

  29. Kloosterman, W. P., & Plasterk, R. H. (2006). The diverse functions of microRNAs in animal development and disease. Developmental Cell, 11(4), 441–450.

    Article  CAS  Google Scholar 

  30. Xu, C., Lu, Y., Pan, Z., Chu, W., Luo, X., Lin, H., Xiao, J., Shan, H., Wang, Z., & Yang, B. (2007). The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. Journal of Cell Science, 120(17), 3045–3052.

    Article  CAS  Google Scholar 

  31. Tan, W., Li, Y., Lim, S., & Tan, T. (2014). miR-106b-25/miR-17-92 clusters: polycistrons with oncogenic roles in hepatocellular carcinoma. World Journal of Gastroenterology, 20(20), 5962–5972.

    Article  CAS  Google Scholar 

  32. Carraro, G., El-Hashash, A., Guidolin, D., Tiozzo, C., Turcatel, G., Young, B. M., De Langhe, S. P., Bellusci, S., Shi, W., & Parnigotto, P. (2009). miR-17 family of microRNAs controls FGF10-mediated embryonic lung epithelial branching morphogenesis through MAPK14 and STAT3 regulation of E-cadherin distribution. Developmental Biology, 333(2), 238–250.

    Article  CAS  Google Scholar 

  33. Li, Y., Tan, W., Neo, T., Aung, M., Wasser, S., Lim, S., & Tan, T. (2009). Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer Science, 100(7), 1234–1242.

    Article  CAS  Google Scholar 

  34. O’Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V., & Mendell, J. T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 435(7043), 839–843.

    Article  Google Scholar 

  35. Lin, Y., Liao, C., Huang, Y., Wu, M., Chi, H., Wu, S., Chen, C., Tseng, Y., Tsai, C., & Chung, I. (2013). Thyroid hormone receptor represses miR-17 expression to enhance tumor metastasis in human hepatoma cells. Oncogene, 32(38), 4509–4518.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Iran National Science Foundation (INSF), research grants of Shahid Beheshti University of Medical Sciences, Tehran. Drug Applied Research Center, and Tabriz University of Medical Sciences, Tabriz, Iran (Grant No 93/22). We would like to thank the Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center for their kind cooperation in providing materials and equipment. We also thank Ms. Ameneh Kouchaki for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nosratollah Zarghami or Hossein Ghanbarian.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 81 kb)

ESM 2

(DOCX 87 kb)

ESM 3

(DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abasi, M., Kohram, F., Fallah, P. et al. Differential Maturation of miR-17 ~ 92 Cluster Members in Human Cancer Cell Lines. Appl Biochem Biotechnol 182, 1540–1547 (2017). https://doi.org/10.1007/s12010-017-2416-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2416-5

Keywords

Navigation