Skip to main content
Log in

Improving Pullulanase Catalysis via Reversible Immobilization on Modified Fe3O4@Polydopamine Nanoparticles

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To improve the catalysis of pullulanase from Anoxybacillus sp.WB42, Fe3O4@polydopamine nanoparticles (Fe3O4@PDA) were prepared and modified with functional groups for immobilization of pullulanases via covalent binding or ionic adsorption. Immobilized pullulanases had lower thermal stability than that of free pullulanase, whereas their catalysis depended on the surface characteristics of nanoparticles. As for covalent immobilization of pullulanases onto Fe3O4@PDA derivatives, the spacer grafted onto Fe3O4@PDA made the catalytic efficiency of pullulanase increase up to the equivalence of free enzyme but dramatically reduced the pullulanase thermostability. In contrast, pullulanases bounded ionically to Fe3O4@PDA derivatives had higher activity recovery and catalytic efficiency, and their catalytic behaviors varied with the modifier grafted onto Fe3O4@PDA. Among these immobilized pullulanases, ionic adsorption of pullulanase on Fe3O4@PDA-polyethyleneimine-glycidyltrimethylammonium gave a high-performance and durable catalyst, which displayed not only 1.5-fold increase in catalytic efficiency compared to free enzyme but also a significant improvement in operation stability with a half of initial activity after 27 consecutive cycles with a total reaction time of 13.5 h, and was reversible, making this nanoparticle reusable for immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hii, S. L., Tan, J. S., Ling, T. C., & Ariff, A. B. (2012). Pullulanase: role in starch hydrolysis and potential industrial applications. Enzyme Research, 2012, 921362. doi:10.1155/2012/921362.

    Article  Google Scholar 

  2. Singh, R. S., Saini, G. K., & Kennedy, J. F. (2010). Maltotriose syrup preparation from pullulan using pullulanase. Carbohydrate Polymers, 80, 401–407.

    Article  CAS  Google Scholar 

  3. Singh, R. S., Saini, G. K., & Kennedy, J. F. (2011). Continuous hydrolysis of pullulan using covalently immobilized pullulanase in a packed bed reactor. Carbohydrate Polymers, 83, 672–675.

    Article  CAS  Google Scholar 

  4. Ansari, S. A., & Husain, Q. (2012). Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnology Advances, 30, 512–523.

    Article  CAS  Google Scholar 

  5. Talekar, S., Desai, S., Pillai, M., Nagavekar, N., Ambarkar, S., Surnis, S., Ladole, M., Nadara, S., & Mulla, M. (2013). Carrier free co-immobilization of glucoamylase and pullulanase as combi-cross linked enzyme aggregates (combi-CLEAs). RSC Advances, 3, 2265–2271.

    Article  CAS  Google Scholar 

  6. Ali, G., Dulong, V., Gasmi, S. N., Rihouey, C., Picton, L., & Le Cerf, D. (2015). Covalent immobilization of pullulanase on alginate and study of its hydrolysis of pullulan. Biotechnology Progress, 31, 883–889.

    Article  CAS  Google Scholar 

  7. Kuroiwa, T., Shoda, H., Ichikawa, S., Sato, S., & Mukataka, S. (2005). Immobilization and stabilization of pullulanase from Klebsiella pneumoniae by a multipoint attachment method using activated agar gel supports. Process Biochemistry, 40, 2637–2642.

    Article  CAS  Google Scholar 

  8. Dessouki, A. M., Issa, G. I., & Atia, K. S. (2001). Pullulanase immobilization on natural and synthetic polymers. Journal of Chemical Technology and Biotechnology, 76, 700–706.

    Article  CAS  Google Scholar 

  9. George, R., & Sugunan, S. (2014). Kinetic and thermodynamic parameters of immobilized glucoamylase on different mesoporous silica for starch hydrolysis: a comparative study. Journal of Molecular Catalysis B: Enzymatic, 106, 81–89.

    Article  CAS  Google Scholar 

  10. Zhang, L., Zhu, X., Zheng, S., & Sun, H. (2009). Photochemical preparation of magnetic chitosan beads for immobilization of pullulanase. Biochemical Engineering Journal, 46, 83–87.

    Article  CAS  Google Scholar 

  11. Long, J., Jiao, A., Wei, B., Wu, Z., Zhang, Y., Xu, X., & Jin, Z. (2014). A novel method for pullulanase immobilized onto magnetic chitosan/Fe3O4 composite nanoparticles by in situ preparation and evaluation of the enzyme stability. Journal of Molecular Catalysis B: Enzymatic, 109, 53–61.

    Article  CAS  Google Scholar 

  12. Long, J., Li, X., Wu, Z., Xu, E., Xu, X., Jin, Z., & Jiao, A. (2015). Immobilization of pullulanase onto activated magnetic chitosan/ Fe3O4 nanoparticles prepared by in situ mineralization and effect of surface functional groups on the stability. Colloids and Surfaces A: Physicochemical and Engineering, 472, 69–77.

    Article  CAS  Google Scholar 

  13. Long, J., Xu, E., Li, X., Wu, Z., Wang, F., Xu, X., Jin, Z., Jiao, A., & Zhan, X. (2016). Effect of chitosan molecular weight on the formation of chitosan–pullulanase soluble complexes and their application in the immobilization of pullulanase onto Fe3O4–κ-carrageenan nanoparticles. Food Chemistry, 202, 49–58.

    Article  CAS  Google Scholar 

  14. Kusano, S., Shiraishi, T., Takahashi, S. I., Fujimoto, D., & Sakano, Y. (1989). Immobilization of Bacillus acidopullulyticus pullulanase and properties of the immobilized pullulanases. Journal of Fermentation and Bioengineering, 68, 233–237.

    Article  CAS  Google Scholar 

  15. Živković, L. T. I., Živković, L. S., Babić, B. M., Kokunešoski, M. J., Jokić, B. M., & Karadžić, I. M. (2015). Immobilization of Candida rugosa lipase by adsorption onto biosafe meso/macroporous silica and zirconia. Biochemical Engineering Journal, 93, 73–83.

    Article  Google Scholar 

  16. Cesar, M., Fernandez-Lafuente, R., & Guisan, J. M. (2000). Reversible enzyme immobilization via a very strong and nondistorting ionic adsorption on support polyethyleneimine composites. Biotechnology and Bioengineering, 68, 98–105.

    Article  Google Scholar 

  17. Torres, R., Pessela, B. C., Mateo, C., Ortiz, C., Fuentes, M., Guisan, J. M., & Fernandez-afuente, R. (2004). Reversible immobilization of glucoamylase by ionic adsorption on sepabeads coated with polyethyleneimine. Biotechnology Progress, 20, 1297–1300.

    Article  CAS  Google Scholar 

  18. Fuentes, M., Pessela, B. C., Maquiese, J. V., Ortiz, C., Segura, R. L., Palomo, J. M., & Guisán, J. M. (2004). Reversible and strong immobilization of proteins by ionic exchange on supports coated with sulfate-dextran. Biotechnology Progress, 20, 1134–1139.

    Article  CAS  Google Scholar 

  19. Khoobi, M., Motevalizadeh, S. F., Asadgol, Z., Forootanfar, H., Shafiee, A., & Faramarzi, M. A. (2015). Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles for lipase immobilization: characterization and application. Materials Chemistry and Physics, 149, 77–86.

    Article  Google Scholar 

  20. Wang, J., Zhao, G., Li, Y., Peng, X., & Wang, X. (2015). Preparation of amine-functionalized mesoporous magnetic colloidal nanocrystal clusters for glucoamylase immobilization. Chemical Engineering Journal, 263, 471–478.

    Article  CAS  Google Scholar 

  21. Zhang, Y., Ge, J., & Liu, Z. (2015). Enhanced activity of immobilized or chemically modified enzymes. ACS Catalysis, 5, 4503–4513.

    Article  Google Scholar 

  22. Pavlidis, I. V., Vorhaben, T., Gournis, D., Papadopoulos, G. K., Bornscheuer, U. T., & Stamatis, H. (2012). Regulation of catalytic behaviour of hydrolases through interactions with functionalized carbon-based nanomaterials. Journal of Nanoparticle Research, 14, 1–10.

    Article  Google Scholar 

  23. Ding, S., Cargill, A. A., Medintz, I. L., & Claussen, J. C. (2015). Increasing the activity of immobilized enzymes with nanoparticle conjugation. Current Opinion in Biotechnology, 34, 242–250.

    Article  CAS  Google Scholar 

  24. Johnson, B. J., Algar, W. R., Malanoski, A. P., Ancona, M. G., & Medintz, I. L. (2014). Understanding enzymatic acceleration at nanoparticle interfaces: approaches and challenges. Nano Today, 9, 102–131.

    Article  CAS  Google Scholar 

  25. Liu, R., Guo, Y., Odusote, G., Qu, F., & Priestley, R. D. (2013). Core–shell Fe3O4 polydopamine nanoparticles serve multipurpose as drug carrier, catalyst support and carbon adsorbent. ACS Applied Materials & Interfaces, 5, 9167–9171.

    Article  CAS  Google Scholar 

  26. Mo, R. Y., & Wang, G. Z. (2008). Preparation of supermagnetic dextran-coated iron oxide nanoparticles and using for h-22 cells magnetic labeling. Acta Biochimica et Biophysica Sinica, 6, 009.

    Google Scholar 

  27. Chang, P. R., Yu, J., Ma, X., & Anderson, D. P. (2011). Polysaccharides as stabilizers for the synthesis of magnetic nanoparticles. Carbohydrate Polymers, 83, 640–644.

    Article  CAS  Google Scholar 

  28. Lee, H., Dellatore, S. M., Miller, W. M., & Messersmith, P. B. (2007). Mussel-inspired surface chemistry for multifunctional coatings. Science, 318, 426–430.

    Article  CAS  Google Scholar 

  29. Bailey, M. J. (1988). A note on the use of dinitrosalicylic acid for determining the products of enzymatic reactions. Applied Microbiology and Biotechnology, 29, 494–496.

    Article  CAS  Google Scholar 

  30. Tang, Q. Y., & Zhang, C. X. (2013). Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Science, 20, 254–260.

    Article  Google Scholar 

  31. Lee, H., Rho, J., & Messersmith, P. B. (2009). Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Advanced Materials, 21, 431–434.

    Article  CAS  Google Scholar 

  32. Talbert, J. N., & Goddard, J. M. (2012). Enzymes on material surfaces. Colloids and Surfaces B: Biointerfaces, 93, 8–19.

    Article  CAS  Google Scholar 

  33. Kuan, I., Liao, R., Hsieh, H., Chen, K., & Yu, C. (2008). Properties of D-amino acid oxidase immobilized on magnetic beads through His-tag. Journal of Bioscience and Bioengineering, 105, 110–115.

    Article  CAS  Google Scholar 

  34. Barbosa, O., Torres, R., Ortiz, C., Berenguer-Murcia, A., Rodrigues, R. C., & Fernandez-Lafuente, R. (2013). Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromolecules, 14, 2433–2462.

    Article  CAS  Google Scholar 

  35. Aissaoui, N., Landoulsi, J., Bergaoui, L., Boujday, S., & Lambert, J. F. (2013). Catalytic activity and thermostability of enzymes immobilized on silanized surface: influence of the crosslinking agent. Enzyme and Microbial Technology, 52, 336–343.

    Article  CAS  Google Scholar 

  36. Hernandez, K., & Fernandez-Lafuente, R. (2011). Control of protein immobilization: coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme and Microbial Technology, 48, 107–122.

    Article  CAS  Google Scholar 

  37. Goldstein, L., Levin, Y., & Katchalski, E. (1964). A water-insoluble polyanionic derivative of trypsin. II. effect of the polyelectrolyte carrier on the kinetic behavior of the bound Trypsin. Biochemistry, 3, 1913–1919.

    CAS  Google Scholar 

  38. Goldstein, L., Pecht, M., Blumberg, S., Atlas, D., & Levin, Y. (1970). Water-insoluble enzymes. Synthesis of a new carrier and its utilization for preparation of insoluble derivatives of papain, trypsin, and subtilopeptidase A. Biochemistry, 9, 2322–2334.

    Article  CAS  Google Scholar 

  39. Goldstein, L. (1972). Microenvironmental effects on enzyme catalysis. Kinetic study of polyanionic and polycationic derivatives of chymotrypsin. Biochemistry, 11, 4072–4084.

    Article  CAS  Google Scholar 

  40. Vahidi, A. K., Yang, Y., Ngo, T. P., & Li, Z. (2015). Simple and efficient immobilization of extra-cellular his-tagged enzyme directly from cell culture supernatant as active and recyclable nanobiocatalyst: high performance production of biodiesel from waste grease. ACS Catalysis, 5, 3157–3161.

    Article  CAS  Google Scholar 

  41. Cha, T., Guo, A., & Zhu, X. Y. (2005). Enzymatic activity on a chip: the critical role of protein orientation. Proteomics, 5, 416–419.

    Article  CAS  Google Scholar 

  42. Singh, R. S., Saini, G. K., & Kennedy, J. F. (2010). Covalent immobilization and thermodynamic characterization of pullulanase for the hydrolysis of pullulan in batch system. Carbohydrate Polymers, 81, 252–259.

    Article  CAS  Google Scholar 

  43. Campbell, A. S., Dong, C., Meng, F., Hardinger, J., Perhinschi, G., Wu, N., & Dinu, C. Z. (2014). Enzyme catalytic efficiency: a function of bio–nano interface reactions. ACS Applied Materials & Interfaces, 6, 5393–5403.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhemin Zhou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or nonprofit sectors.

Electronic supplementary material

ESM 1

(DOCX 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liu, Z. & Zhou, Z. Improving Pullulanase Catalysis via Reversible Immobilization on Modified Fe3O4@Polydopamine Nanoparticles. Appl Biochem Biotechnol 182, 1467–1477 (2017). https://doi.org/10.1007/s12010-017-2411-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2411-x

Keywords

Navigation