Skip to main content
Log in

Establishment of Bioprocess for Synthesis of Nicotinamide by Recombinant Escherichia coli Expressing High-Molecular-Mass Nitrile Hydratase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Application of engineered bacteria expressing nitrile hydratase for the production of amide is getting tremendous attention due to the rapid development of recombinant DNA technique. This study evaluated the effect of 3-cyanopyridine concentrations on nicotinamide production using recombinant Escherichia coli strain (BAG) expressing high-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1, and established proper process of whole-cell catalysis of 3-cyanopyridine and high cell-density cultivation. The process of substrate fed-batch was applied in the production of nicotinamide, and the concentration of product reached 390 g/L under the condition of low cell-density. After the high cell-density cultivation of BAG in 5 L bioreactor, the OD600 of cell attained 200 and the total activity reached 2813 U/mL. Different high density of BAG after fermentation in the tank was used to catalyze 3-cyanopyridine, and the concentration of nicotinamide reached to 508 g/L in just 60 min. The productivity of BAG was 212% higher than that of R. rhodochrous J1, and it is possible that BAG is able to achieve industrial production of nicotinamide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kobayashi, M., & Shimizu, S. (1998). Metalloenzyme nitrile hydratase: structure, regulation, and application to biotechnology. Nature Biotechnology, 16, 733–736.

    Article  CAS  Google Scholar 

  2. Asano, Y., Tani, Y., & Yamada, H. (1980). A new enzyme “nitrile hydratase” which degrades acetonitrile in combination with amidase. Agricultural and Biological Chemistry, 44, 2251–2252.

    CAS  Google Scholar 

  3. Noguchi, T., Nojiri, M., Takei, K., Odaka, M., & Kamiya, N. (2003). Protonation structures of Cys-sulfinic and Cys-sulfenic acids in the photosensitive nitrile hydratase revealed by Fourier transform infrared spectroscopy. Biochemistry, 42, 11642–11650.

    Article  CAS  Google Scholar 

  4. Greene, S. N., & Richards, N. G. (2006). Electronic structure, bonding, spectroscopy and energetics of Fe-dependent nitrile hydratase active-site models. Inorganic Chemistry, 45, 17–36.

    Article  CAS  Google Scholar 

  5. Komeda, H., Kobayashi, M., & Shimizu, S. (1996). A novel gene cluster including the Rhodococcus rhodochrous J1 nhlBA genes encoding a low molecular mass nitrile hydratase (L-NHase) induced by its reaction product. The Journal of Biological Chemistry, 271, 15796–15802.

    Article  CAS  Google Scholar 

  6. Kobayashi, M., & Shimizu, S. (1999). Cobalt proteins. European Journal of Biochemistry, 261, 1–9.

    Article  CAS  Google Scholar 

  7. Payne, M. S., Wu, S., Fallon, R. D., Tudor, G., Stieglitz, B., Turner Jr., I. M., & Nelson, M. J. (1997). A stereoselective cobalt-containing nitrile hydratase. Biochemistry, 36, 5447–5454.

    Article  CAS  Google Scholar 

  8. Yamada, H., & Kobayashi, M. (1996). Nitrile hydratase and its application to industrial production of acrylamide. Bioscience Biotechnology and Biochemistry, 60, 1391–1400.

    Article  CAS  Google Scholar 

  9. Prasad, S., & Bhalla, T. C. (2010). Nitrile hydratases (NHases): at the interface of academia and industry. Biotechnology Advances, 28, 725–741.

    Article  CAS  Google Scholar 

  10. de Carvalho, C. C. C. R. (2011). Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnology Advances, 29, 75–83.

    Article  Google Scholar 

  11. Schmid, A., Dordick, J. S., Hauer, B., Kiener, A., Wubbolts, M., & Witholt, B. (2001). Industrial biocatalysis today and tomorrow. Nature, 409, 258–268.

    Article  CAS  Google Scholar 

  12. Liu, Y., Cui, W., Liu, Z., Cui, Y., Xia, Y., Kobayashi, M., & Zhou, Z. (2014). Effect of flexibility and positive charge of the C-terminal domain on the activator P14K function for nitrile hydratase in Pseudomonas putida. FEMS Microbiology Letters, 352, 38–44.

    Article  CAS  Google Scholar 

  13. Ravi, S., Mathew, K. M., & Sivaprasad, N. (2008). A rapid microwave induced synthesis of [carboxyl-14C]-nicotinic acid (vitamin B3) and [carbonyl-14C]-nicotinamide using K14CN. J. Radioanal. Nucl. Ch, 275, 441–444.

    Article  CAS  Google Scholar 

  14. Li, B., Su, J., & Tao, J. (2010). Enzyme and process development for production of nicotinamide. Org. Process Res. De, 15, 291–293.

    Article  Google Scholar 

  15. Nagasawa, T., Takeuchi, K., & Yamada, H. (1988). Occurrence of a cobalt-induced and cobalt-containing nitrile hydratase in Rhodococcus rhodochrous J1. Biochem. Bioph. Res. Co, 155, 1008–1016.

    Article  CAS  Google Scholar 

  16. Nagasawa, T., Takeuchi, K., & Yamada, H. (1991). Characterization of a new cobalt-containing nitrile hydratase purified from urea-induced cells of Rhodococcus rhodochrous J1. European Journal of Biochemistry, 196, 581–589.

    Article  CAS  Google Scholar 

  17. Komeda, H., Kobayashi, M., & Shimizu, S. (1996). Characterization of the gene cluster of high-molecular-mass nitrile hydratase (H-NHase) induced by its reaction product in Rhodococcus rhodochrous J1. Proceedings of the National Academy of Sciences of the United States of America, 93, 4267–4272.

    Article  CAS  Google Scholar 

  18. Nagasawa, T., Takeuchi, K., Nardi-Dei, V., Mihara, Y., & Yamada, H. (1991). Optimum culture conditions for the production of cobalt-containing nitrile hydratase by Rhodococcus rhodochrous J1. Appl. Microbiol. Biot, 34, 783–788.

    Article  CAS  Google Scholar 

  19. Zhou, Z., Hashimoto, Y., Shiraki, K., & Kobayashi, M. (2008). Discovery of posttranslational maturation by self-subunit swapping. Proceedings of the National Academy of Sciences of the United States of America, 105, 14849–14854.

    Article  CAS  Google Scholar 

  20. Nagasawa, T., Mathew, C. D., Mauger, J., & Yamada, H. (1988). Nitrile hydratase-catalyzed production of nicotinamide from 3-cyanopyridine in Rhodococcus rhodochrous J1. Applied and Environmental Microbiology, 54, 1766–1769.

    CAS  Google Scholar 

  21. Tian, Y., Chen, J., Yu, H., & Shen, Z. (2016). Overproduction of the Escherichia coli chaperones GroEL-GroES in Rhodococcus ruber improves the activity and stability of cell catalysts harboring a nitrile hydratase. J. Microbiol. Biotechn, 26, 337–346.

    Article  CAS  Google Scholar 

  22. Nagasawa, T., Takeuchi, K., & Yamada, H. (1993). The superiority of the third-generation catalyst, Rhodococcus rhodochrous J1 nitrile hydratase, for industrial production of acrylamide. Applied Microbiology and Biotechnology, 40, 189–195.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the 111 Project (No. 111-2-06), the Jiangsu province “Collaborative Innovation Center for Advanced Industrial Fermentation” industry development program, the National Natural Science Foundation of China (31400078, 31400058), the Natural Science Foundation of Jiangsu Province for Youth Fund (BK20140151), and the International S&T Innovation Cooperation Key Project (2016YFE0127400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongmei Liu or Zhemin Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, Z., Cui, W. et al. Establishment of Bioprocess for Synthesis of Nicotinamide by Recombinant Escherichia coli Expressing High-Molecular-Mass Nitrile Hydratase. Appl Biochem Biotechnol 182, 1458–1466 (2017). https://doi.org/10.1007/s12010-017-2410-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2410-y

Keywords

Navigation